Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2017

15.12.2016 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Synthesis and phase formation in MxOy–ZrO2 nanosized precursors (M = Zn2+, Cd2+, Pb2+, Bi3+)

verfasst von: V. G. Konakov, O. Yu. Kurapova, N. V. Borisova, S. N. Golubev, V. M. Ushakov, E. V. Koroleva, I. Yu. Archakov

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper reports the synthesis and the investigation of the phase formation in MxOy–ZrO2 nanosized systems the temperature range 360–850 °С, performed via simultaneous thermal analysis, X-ray diffraction analysis and particle size distribution analysis. Nanosized MO-ZrO2 precursors with MO content 5–10 mol.% and Bi2O3–ZrO2 precursors with Bi2O3 content 5–14 mol.% were obtained by reversed co-precipitation from diluted salts solutions with following drying under exceeded pressure. In contrast to microsized systems,nanosized powders exhibit exothermic effects corresponding to crystallization at 360–570 °С in DSC curves. Metastable cubic zirconia solid solutions are present after annealing for all zirconia based precursors studied phase evolution study innanosized MxOy–ZrO2 systems (M = Zn2+, Cd2+, Pb2+, Bi3+) except 10PbO–90ZrO2 composition. Cubic zirconia solid solution with no admixture of monoclinic phase is formed only in case of 14Bi2O3–96ZrO2. The stability of cubic solid solutions formed in time and temperature range was studied by X-ray diffraction. Crystalline size estimated from Scherrer’s equation is 17–25 nm. The main agglomerate size calculated from particle size distribution analysis lie in the range 234–590 nm. Nanocrystallinity and high dispersity of powders favor phase stability of cubic solid solutions formed.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-016-4278-7/MediaObjects/10971_2016_4278_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
3.
Zurück zum Zitat Slotwinski RK, Bonanos N, Butler EP (1985) J Mater Sci Lett 4:641–644CrossRef Slotwinski RK, Bonanos N, Butler EP (1985) J Mater Sci Lett 4:641–644CrossRef
4.
5.
Zurück zum Zitat Kharton VV (2009) Solid state electrochemistry I: fundamentals, materials and their applications. Wiley. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim Kharton VV (2009) Solid state electrochemistry I: fundamentals, materials and their applications. Wiley. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim
6.
Zurück zum Zitat Rickert H (1982) Electrochemistry of solids. An introduction. Springer, BerlinCrossRef Rickert H (1982) Electrochemistry of solids. An introduction. Springer, BerlinCrossRef
11.
Zurück zum Zitat Ishihara T, Sammes NM, Yamamoto O (2003) In: Singhal SC, Kendal K (eds) High temperature and solid oxide fuel cells: fundamentals, design and applications. Elsevier Science, Amsterdam Ishihara T, Sammes NM, Yamamoto O (2003) In: Singhal SC, Kendal K (eds) High temperature and solid oxide fuel cells: fundamentals, design and applications. Elsevier Science, Amsterdam
12.
Zurück zum Zitat Gao L, Zheng Y, Gu H, Chen H, Guo L (2010) J Power Sources 195:3130–3134CrossRef Gao L, Zheng Y, Gu H, Chen H, Guo L (2010) J Power Sources 195:3130–3134CrossRef
13.
Zurück zum Zitat Novik NN, Konakov VG, Archakov IYu (2015) Rev Adv Mater Sci 40:188–207 Novik NN, Konakov VG, Archakov IYu (2015) Rev Adv Mater Sci 40:188–207
14.
15.
Zurück zum Zitat Ivanov-Pavlov DA, Konakov VG, Golubev SN, Anufrikov YuA (2010) Bull St Petersburg State University 1:142–148. 4 Ivanov-Pavlov DA, Konakov VG, Golubev SN, Anufrikov YuA (2010) Bull St Petersburg State University 1:142–148. 4
20.
Zurück zum Zitat Shao Z, Zhou W, Zhu Z (2012) Prog Mater Sci: 57(4), 804–874 Shao Z, Zhou W, Zhu Z (2012) Prog Mater Sci: 57(4), 804–874
21.
22.
Zurück zum Zitat Goldschmidt VM The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, (1937) J Chem Soc (Resumed) 655–673 Goldschmidt VM The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, (1937) J Chem Soc (Resumed) 655–673
23.
Zurück zum Zitat Badwall SPS, Chiacchi FT, Milosevic D (2000) Solid State Ionics 136:91–99CrossRef Badwall SPS, Chiacchi FT, Milosevic D (2000) Solid State Ionics 136:91–99CrossRef
24.
Zurück zum Zitat Haering C, Roosen A, Schichl H, Schnoller M (2005) Solid State Ionics 176:261–268CrossRef Haering C, Roosen A, Schichl H, Schnoller M (2005) Solid State Ionics 176:261–268CrossRef
25.
Zurück zum Zitat Lee D, Lee I, Jeon Y, Song R (2005) Solid State Ionics 176:1021–1025CrossRef Lee D, Lee I, Jeon Y, Song R (2005) Solid State Ionics 176:1021–1025CrossRef
26.
27.
Zurück zum Zitat Ahrens LH (1952) Geochimica Cosmochimicaacta 2:165–169 Ahrens LH (1952) Geochimica Cosmochimicaacta 2:165–169
28.
Zurück zum Zitat Valigi M, Gazzol Di, Incocciati E, Dragone R (1997) Solid State Ionics 101-103:597–603 Valigi M, Gazzol Di, Incocciati E, Dragone R (1997) Solid State Ionics 101-103:597–603
29.
30.
Zurück zum Zitat Jeanneau E, Audebrand N, Le Floch M, Bureau B, Louër D (2003) J Solid State Chem 170:330–338CrossRef Jeanneau E, Audebrand N, Le Floch M, Bureau B, Louër D (2003) J Solid State Chem 170:330–338CrossRef
32.
Zurück zum Zitat Sammes NM, Tompsett GA, Nafe H, Aldinger F (1999) J Eur Ceram Soc 19:1801–1826CrossRef Sammes NM, Tompsett GA, Nafe H, Aldinger F (1999) J Eur Ceram Soc 19:1801–1826CrossRef
33.
35.
Zurück zum Zitat Shukla S, Seal S, Vanfleet R (2003) J Sol Gel Sci Technol 27:119–136CrossRef Shukla S, Seal S, Vanfleet R (2003) J Sol Gel Sci Technol 27:119–136CrossRef
36.
Zurück zum Zitat Konakov VG, Kurapova OYu (2014) Rev Adv Sci 36:177–190 Konakov VG, Kurapova OYu (2014) Rev Adv Sci 36:177–190
37.
Zurück zum Zitat Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM, Archakov IYu (2012) Rev Adv Sci 32:14–34 Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM, Archakov IYu (2012) Rev Adv Sci 32:14–34
38.
Zurück zum Zitat Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM (2014) Refract Ind Ceram 55:151–156CrossRef Kurapova OYu, Konakov VG, Golubev SN, Ushakov VM (2014) Refract Ind Ceram 55:151–156CrossRef
39.
Zurück zum Zitat Toropov NA, Barzakovski VP, Lapin VV, Kurtzeva NN (1969) Phase diagrams of silicate systems. Nauka, Leningrad Toropov NA, Barzakovski VP, Lapin VV, Kurtzeva NN (1969) Phase diagrams of silicate systems. Nauka, Leningrad
40.
Zurück zum Zitat KaryakinYuV and Angelov II (1974) Pure chemical substances. Khimia, Moscow KaryakinYuV and Angelov II (1974) Pure chemical substances. Khimia, Moscow
41.
Zurück zum Zitat Gulino A, La Delfa S, Fragala I, Egdell RG (1996) Chem Mater 8:1287–1291CrossRef Gulino A, La Delfa S, Fragala I, Egdell RG (1996) Chem Mater 8:1287–1291CrossRef
42.
Zurück zum Zitat Babushkin VI, Matveev GM, Mchedlov-Petrosyan OP (1986) Thermodynamics of silicates. Stroyizdat, Moscow Babushkin VI, Matveev GM, Mchedlov-Petrosyan OP (1986) Thermodynamics of silicates. Stroyizdat, Moscow
Metadaten
Titel
Synthesis and phase formation in MxOy–ZrO2 nanosized precursors (M = Zn2+, Cd2+, Pb2+, Bi3+)
verfasst von
V. G. Konakov
O. Yu. Kurapova
N. V. Borisova
S. N. Golubev
V. M. Ushakov
E. V. Koroleva
I. Yu. Archakov
Publikationsdatum
15.12.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4278-7

Weitere Artikel der Ausgabe 1/2017

Journal of Sol-Gel Science and Technology 1/2017 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Unidirectional alignment of liquid crystals on solution-derived hafnium tin oxide films via ion-beam irradiation

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

Synthesis of mesoporous tungsten oxide by template-assisted sol–gel method and its photocatalytic degradation activity

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Preparation and electrochemical properties of Ba0.8La0.2FeO3-δ cathode for intermediate-temperature solid oxide fuel cells

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Nano ZnO thin films synthesis by sol–gel spin coating method as a transparent layer for solar cell applications

Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

TiO2 hierarchical porous films sensitized by Sb2S3 nanoparticles for enhanced photoelectrochemical properties

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.