Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2019

25.03.2019

Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors

verfasst von: Abdul Jabbar Khan, Muddasir Hanif, Muhammad Sufyan Javed, Shahid Hussain, Zhongwu Liu

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexible supercapacitors (SCs) have shown great potential for portable electronic devices due to ultra-long lifetime and high power characteristics. However, low energy densities of SCs hinder their practical applications. Herein, mesoporous C60 fullerene micro-particles (mCF) are prepared using Krätschmer-Huffman method, followed by solvent extraction and column chromatography for purification. The as-prepared mCF is characterized by XRD, EIMS, XPS, EDX, SEM, Raman spectroscopy and BET analysis, respectively. The mCF supported on carbon cloth (mCF@CC) is used as the electrode to study charge storage properties. The mCF@CC exhibits excellent capacitance of 440 F/g at 2 A/g, good rate capability of 84.85% at high current density of 12 A/g and stable life up to 10000 cycles. Additionally, the mCF@CC electrode possesses good flexible characteristics and presents almost same performance after 1000 bending cycles. Thus, mesoporous C60 fullerene micro-particles can be employed as negative electrode material for the flexible next generation supercapacitors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60 Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60 Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef
2.
Zurück zum Zitat B.C. Yadav, F.R. Kumar, Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2, 15–24 (2008) B.C. Yadav, F.R. Kumar, Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2, 15–24 (2008)
3.
Zurück zum Zitat A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, S.P.M. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)CrossRef A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, S.P.M. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)CrossRef
4.
Zurück zum Zitat D.M. Guldi, G.M.A. Rahman, V. Sgobba, C. Ehli, Multifunctional molecular carbon materials from fullerenes to carbon nanotubes. Chem. Soc. Rev. 35, 471–487 (2006)CrossRef D.M. Guldi, G.M.A. Rahman, V. Sgobba, C. Ehli, Multifunctional molecular carbon materials from fullerenes to carbon nanotubes. Chem. Soc. Rev. 35, 471–487 (2006)CrossRef
5.
Zurück zum Zitat C. Deibel, V. Dyakonov, Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef C. Deibel, V. Dyakonov, Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef
6.
Zurück zum Zitat R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007) R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007)
7.
Zurück zum Zitat D. Sun, C.A. Reed, Crystal engineering a linear polymer of C60 fullerene via supramolecular pre-organization. Chem. Commun. 2000, 2391–2392 D. Sun, C.A. Reed, Crystal engineering a linear polymer of C60 fullerene via supramolecular pre-organization. Chem. Commun. 2000, 2391–2392
8.
Zurück zum Zitat A.Z. Thong, M.S. Shaffer, A.P. Horsfield, H.O.M.O.-L.U.M.O. Coupling: the fourth rule for highly effective molecular rectifiers. Nanoscale 9, 8119–8125 (2017)CrossRef A.Z. Thong, M.S. Shaffer, A.P. Horsfield, H.O.M.O.-L.U.M.O. Coupling: the fourth rule for highly effective molecular rectifiers. Nanoscale 9, 8119–8125 (2017)CrossRef
9.
Zurück zum Zitat B.C. Thompson, J.M. Fréchet, Polymer-fullerene composite solar cells. Angew. Chem. 47, 58–77 (2008)CrossRef B.C. Thompson, J.M. Fréchet, Polymer-fullerene composite solar cells. Angew. Chem. 47, 58–77 (2008)CrossRef
10.
Zurück zum Zitat S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRef S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)CrossRef
11.
Zurück zum Zitat J. Ma, Q. Guo, H.-L. Gao, X. Qin, Synthesis of C60/graphene composite as electrode in supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 23, 477–482 (2014)CrossRef J. Ma, Q. Guo, H.-L. Gao, X. Qin, Synthesis of C60/graphene composite as electrode in supercapacitors. Fuller. Nanotub. Carbon Nanostruct. 23, 477–482 (2014)CrossRef
12.
Zurück zum Zitat M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11, 185 (2019)CrossRef M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11, 185 (2019)CrossRef
13.
Zurück zum Zitat Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang, Z. Jia, Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J. Mater. Sci. 28, 17871–17880 (2017) Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang, Z. Jia, Dielectric and thermal properties of epoxy resins with TiO2 nanowires. J. Mater. Sci. 28, 17871–17880 (2017)
14.
Zurück zum Zitat G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)CrossRef G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)CrossRef
15.
Zurück zum Zitat Y.M. Manawi, A. Ihsanullah, T. Samara, M.A. Al-Ansari, Atieh, A review of carbon nanomaterials synthesis via the chemical vapor deposition (CVD) method. Materials 11, 822 (2018)CrossRef Y.M. Manawi, A. Ihsanullah, T. Samara, M.A. Al-Ansari, Atieh, A review of carbon nanomaterials synthesis via the chemical vapor deposition (CVD) method. Materials 11, 822 (2018)CrossRef
16.
Zurück zum Zitat S. Nasir, M.Z. Hussein, Z. Zainal, N.A. Yusof, Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials 11, 295 (2018)CrossRef S. Nasir, M.Z. Hussein, Z. Zainal, N.A. Yusof, Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials 11, 295 (2018)CrossRef
17.
Zurück zum Zitat G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
18.
Zurück zum Zitat J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)CrossRef J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321, 651–652 (2008)CrossRef
19.
Zurück zum Zitat C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49, 4890–4897 (2011)CrossRef C.L. Pint, N.W. Nicholas, S. Xu, Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon 49, 4890–4897 (2011)CrossRef
20.
Zurück zum Zitat M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)CrossRef M. Notarianni, J. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J. Nanotechnol. 7, 149–196 (2016)CrossRef
21.
Zurück zum Zitat A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)CrossRef A.J. Clancy, M.K. Bayazit, S.A. Hodge, N.T. Skipper, C.A. Howard, M.S.P. Shaffer, Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018)CrossRef
22.
Zurück zum Zitat J.H. Schön, Ch Kloc, B. Batlogg, Superconductivity at 52 K in hole-doped C. Nature 60, 549–552 (2000) 408 )CrossRef J.H. Schön, Ch Kloc, B. Batlogg, Superconductivity at 52 K in hole-doped C. Nature 60, 549–552 (2000) 408 )CrossRef
23.
Zurück zum Zitat M. Prato, M. Maggini, C. Giacometti, G. Scorrano, G. Sandonh, G. Farnia, Synthesis and electrochemical properties of substituted fulleropyrrolidines. Tetrahedron 52, 5221–5234 (1996)CrossRef M. Prato, M. Maggini, C. Giacometti, G. Scorrano, G. Sandonh, G. Farnia, Synthesis and electrochemical properties of substituted fulleropyrrolidines. Tetrahedron 52, 5221–5234 (1996)CrossRef
24.
Zurück zum Zitat J. Li, X. Cheng, A. Shashurin, M. Keidar, Review of electrochemical capacitors based on carbon nanotubes and graphene. Graphene 1, 1–13 (2012)CrossRef J. Li, X. Cheng, A. Shashurin, M. Keidar, Review of electrochemical capacitors based on carbon nanotubes and graphene. Graphene 1, 1–13 (2012)CrossRef
25.
Zurück zum Zitat J. Yang, M. Heo, H.J. Lee, S.-M. Park, J.Y. Kim, H.S. Shin, Reduced graphene oxide (rGO)-wrapped fullerene (C60) Wires. ACS Nano 5, 8365–8371 (2011)CrossRef J. Yang, M. Heo, H.J. Lee, S.-M. Park, J.Y. Kim, H.S. Shin, Reduced graphene oxide (rGO)-wrapped fullerene (C60) Wires. ACS Nano 5, 8365–8371 (2011)CrossRef
26.
Zurück zum Zitat V. Yong, H.T. Hahn, Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors. Adv. Nanopart. 2, 1–5 (2013)CrossRef V. Yong, H.T. Hahn, Synergistic effect of fullerene-capped gold nanoparticles on graphene electrochemical supercapacitors. Adv. Nanopart. 2, 1–5 (2013)CrossRef
27.
Zurück zum Zitat H. Wang, X. Yan, G. Piao, A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite. Electrochim. Acta 231, 264–271 (2017)CrossRef H. Wang, X. Yan, G. Piao, A high-performance supercapacitor based on fullerene C60 whisker and polyaniline emeraldine base composite. Electrochim. Acta 231, 264–271 (2017)CrossRef
28.
Zurück zum Zitat K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim. Acta 51, 972–977 (2005)CrossRef K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, High rate performance of highly dispersed C60 on activated carbon capacitor. Electrochim. Acta 51, 972–977 (2005)CrossRef
29.
Zurück zum Zitat X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)CrossRef X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017)CrossRef
30.
Zurück zum Zitat W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon. Nature 347, 354–358 (1990)CrossRef W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon. Nature 347, 354–358 (1990)CrossRef
32.
Zurück zum Zitat T. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017)CrossRef T. Liu, F. Zhang, Y. Song, Y. Li, Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705–17733 (2017)CrossRef
33.
Zurück zum Zitat L.D. Lamb, D.R. Huffman, F. Production, J. Phys. Chem. Solids 54, 1635–1643 (1993)CrossRef L.D. Lamb, D.R. Huffman, F. Production, J. Phys. Chem. Solids 54, 1635–1643 (1993)CrossRef
34.
Zurück zum Zitat W. Krätschmer, How we came to produce C60-fullerite. Z Phys. D 19, 405–408 (1991)CrossRef W. Krätschmer, How we came to produce C60-fullerite. Z Phys. D 19, 405–408 (1991)CrossRef
35.
Zurück zum Zitat B.M. Ginzburg, Sh Tuœchiev, S. Kh. Tabarov, A.A. Shepelevskiœ, L.A. Shibaev, X-ray diffraction analysis of C60 fullerene powder and fullerene soot. Tech. Phys. 50, 1458–1461 (2005)CrossRef B.M. Ginzburg, Sh Tuœchiev, S. Kh. Tabarov, A.A. Shepelevskiœ, L.A. Shibaev, X-ray diffraction analysis of C60 fullerene powder and fullerene soot. Tech. Phys. 50, 1458–1461 (2005)CrossRef
36.
Zurück zum Zitat C. Elschner, A.A. Levin, L. Wilde, J. Grenzer, C. Schroer, K. Leo, M. Riede, Determining the C60 molecular arrangement in thin films by means of X-ray diffraction. J. Appl. Cryst. 44, 983–990 (2011)CrossRef C. Elschner, A.A. Levin, L. Wilde, J. Grenzer, C. Schroer, K. Leo, M. Riede, Determining the C60 molecular arrangement in thin films by means of X-ray diffraction. J. Appl. Cryst. 44, 983–990 (2011)CrossRef
37.
Zurück zum Zitat S.S. Gayathri, A. Patnaik, Bilayer vesicles as precursors for spherical fractal aggregates from the self-assembly of a C60-fullerene-dyad in polar solvent. J. Chem. Phys. 124, 131104 (2006)CrossRef S.S. Gayathri, A. Patnaik, Bilayer vesicles as precursors for spherical fractal aggregates from the self-assembly of a C60-fullerene-dyad in polar solvent. J. Chem. Phys. 124, 131104 (2006)CrossRef
38.
Zurück zum Zitat V. Schettino, M. Pagliai, L. Ciabini, G. Cardini, The vibrational spectrum of fullerene C60. J. Phys. Chem. A 105, 11192–11196 (2001)CrossRef V. Schettino, M. Pagliai, L. Ciabini, G. Cardini, The vibrational spectrum of fullerene C60. J. Phys. Chem. A 105, 11192–11196 (2001)CrossRef
39.
Zurück zum Zitat T.J. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, P.J. Hendra, The vibrational Raman spectra of C60 and C70. Spectrochim. Acta 47, 1289–1292 (1991)CrossRef T.J. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, P.J. Hendra, The vibrational Raman spectra of C60 and C70. Spectrochim. Acta 47, 1289–1292 (1991)CrossRef
40.
Zurück zum Zitat H. Kuzmany, R. Pfe iffer, M. Hulman, C. Kramberger, Raman spectroscopy of fullerenes and fullerene-nanotube composites. Phil. Trans. R. Soc. Lond. A 362, 2375–2406 (2004)CrossRef H. Kuzmany, R. Pfe iffer, M. Hulman, C. Kramberger, Raman spectroscopy of fullerenes and fullerene-nanotube composites. Phil. Trans. R. Soc. Lond. A 362, 2375–2406 (2004)CrossRef
41.
Zurück zum Zitat J. Onoe, A. Nakao, K. Takeuchi, XPS study of a photopolymerized C60 film. Phys. Rev. B 55, 10051–10056 (1997)CrossRef J. Onoe, A. Nakao, K. Takeuchi, XPS study of a photopolymerized C60 film. Phys. Rev. B 55, 10051–10056 (1997)CrossRef
42.
Zurück zum Zitat M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Sources 285, 63–69 (2015)CrossRef M.S. Javed, S. Dai, M. Wang, D. Guo, L. Chen, X. Wang, C. Hu, Y. Xi, High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Sources 285, 63–69 (2015)CrossRef
43.
Zurück zum Zitat Z. Shuoqing, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, M.S. Javed, Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications. Appl. Surf. Sci. 356, 259–265 (2015)CrossRef Z. Shuoqing, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng, M.S. Javed, Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications. Appl. Surf. Sci. 356, 259–265 (2015)CrossRef
44.
Zurück zum Zitat H. Shahid, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao, W. Zeng, J. Wang, Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851–11857 (2016)CrossRef H. Shahid, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao, W. Zeng, J. Wang, Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851–11857 (2016)CrossRef
45.
Zurück zum Zitat M.S. Javed, N. Shaheen, S. Hussain, J. Li, S.S. Ahmad, Y. Abbas, M.A. Ahmad, R. Raza, W Mai, An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A 7(3), 946–957 (2019)CrossRef M.S. Javed, N. Shaheen, S. Hussain, J. Li, S.S. Ahmad, Y. Abbas, M.A. Ahmad, R. Raza, W Mai, An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J. Mater. Chem. A 7(3), 946–957 (2019)CrossRef
46.
Zurück zum Zitat P.T. Ha, H. Moon, B.H. Kim, H.Y. Ng, I.S. Chang, Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens. Bioelectron. 25, 1629–1634 (2010)CrossRef P.T. Ha, H. Moon, B.H. Kim, H.Y. Ng, I.S. Chang, Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens. Bioelectron. 25, 1629–1634 (2010)CrossRef
47.
Zurück zum Zitat M. Ates, Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog. Org. Coat. 71, 1–10 (2011)CrossRef M. Ates, Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog. Org. Coat. 71, 1–10 (2011)CrossRef
48.
Zurück zum Zitat B. Song, K.-S. Moon, C.-P. Wong, Recent developments in design and fabrication of graphene-based interdigital micro-supercapacitors for miniaturized energy storage devices. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1752–1765 (2016)CrossRef B. Song, K.-S. Moon, C.-P. Wong, Recent developments in design and fabrication of graphene-based interdigital micro-supercapacitors for miniaturized energy storage devices. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 1752–1765 (2016)CrossRef
Metadaten
Titel
Synthesis, characterization and charge storage properties of C60-fullerene microparticles as a flexible negative electrode for supercapacitors
verfasst von
Abdul Jabbar Khan
Muddasir Hanif
Muhammad Sufyan Javed
Shahid Hussain
Zhongwu Liu
Publikationsdatum
25.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01177-4

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science: Materials in Electronics 9/2019 Zur Ausgabe

Neuer Inhalt