Skip to main content

2015 | OriginalPaper | Buchkapitel

Synthesis, Chemistry, and Medical Application of Bacterial Cellulose Nanocomposites

verfasst von : Mazhar Ul-Islam, Shaukat Khan, Waleed Ahmad Khattak, Muhammad Wajid Ullah, Joong Kon Park

Erschienen in: Eco-friendly Polymer Nanocomposites

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial cellulose (BC), an environmental friendly polymeric material, has recently received immense attention in the human society. Herein, we have focused on the biosynthesis, chemical structure, and physiological behavior of BC along with synthetic routes and medical applications of its nanocomposites. The structure of BC consists of nanofibrils made up of (1 → 4) β-glycosidic linked glucose units interconnected through intra- and intermolecular hydrogen bonds. The interconnected 3D network structure of BC nanofibers with a high degree of nanoporosity makes BC an ideal candidate for the incorporation of nanomaterials to form reinforced composites. BC nanocomposites have been synthesized through a number of routes that have not only improved the existing properties of BC, but also enhanced it with novel features. Among nanomaterials, metal, metal oxides, and organic nanomaterials have been effectively used to engender antimicrobial, biocompatible, conductive, and magnetic properties in BC. BC nanocomposites have been successfully employed in the medical field and have shown a high clinical value for wound healing and skin tissue repair. Recent interest has been focused on designing ideal biomedical devices like artificial skin and artificial blood vessels from BC. This study will provide an extensive background about the primary features of BC and discuss the synthetic routes and chemical feasibility of BC nanocomposites along with their current and future application in the medical field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092 Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092
2.
Zurück zum Zitat Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969 Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969
3.
Zurück zum Zitat Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959 Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959
4.
Zurück zum Zitat Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096 Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096
5.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421 Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421
6.
Zurück zum Zitat Thakur VK, Singha AS, Thakur MK (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555 Thakur VK, Singha AS, Thakur MK (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555
7.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117 Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117
8.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15 Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15
9.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652 Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652
10.
Zurück zum Zitat Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Inter J Polym Anal Charact 19:256–271 Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Inter J Polym Anal Charact 19:256–271
11.
Zurück zum Zitat Thakur VK, Vennerberg D, Kessler MR (2014) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356 Thakur VK, Vennerberg D, Kessler MR (2014) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356
12.
Zurück zum Zitat Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684 Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684
13.
Zurück zum Zitat Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249 Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249
14.
Zurück zum Zitat Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958 Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958
15.
Zurück zum Zitat Singha AS, Thakur VK, Mehta IK et al (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711 Singha AS, Thakur VK, Mehta IK et al (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711
16.
Zurück zum Zitat Singha AS, Thakur VK, Mishra BN (2009) Study of grewia optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90 Singha AS, Thakur VK, Mishra BN (2009) Study of grewia optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90
17.
Zurück zum Zitat Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioproces Biotechniques 4:1–10 Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioproces Biotechniques 4:1–10
18.
Zurück zum Zitat Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Bioc 61:101–110 Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Bioc 61:101–110
19.
Zurück zum Zitat Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603 Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603
20.
Zurück zum Zitat Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterialcellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197 Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterialcellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197
21.
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598 Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598
22.
Zurück zum Zitat Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873 Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873
23.
Zurück zum Zitat Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E J Chem 5:782–791 Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E J Chem 5:782–791
24.
Zurück zum Zitat Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E J Chem 5:1055–1062 Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E J Chem 5:1055–1062
25.
Zurück zum Zitat Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jama MA (2014) Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate. Korean J Chem Eng 31:644–649 Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jama MA (2014) Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate. Korean J Chem Eng 31:644–649
26.
Zurück zum Zitat Zhou T, Chen D, Jiu J, Nge TT, Sugahara T, Nagao S, Koga H, Nogi M, Suganuma K, Wang X, Liu X, Cheng P, Wang T, Xiong D (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766 Zhou T, Chen D, Jiu J, Nge TT, Sugahara T, Nagao S, Koga H, Nogi M, Suganuma K, Wang X, Liu X, Cheng P, Wang T, Xiong D (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766
27.
Zurück zum Zitat Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744 Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744
28.
Zurück zum Zitat Saibuatong O, Philsalaphong M (2010) Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460 Saibuatong O, Philsalaphong M (2010) Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460
29.
Zurück zum Zitat Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2:1040–1046 Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2:1040–1046
30.
Zurück zum Zitat Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite mate-rials for medical applications. Fibres Text East Eur 12:69–72 Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite mate-rials for medical applications. Fibres Text East Eur 12:69–72
31.
Zurück zum Zitat Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetrationon physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743 Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetrationon physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743
32.
Zurück zum Zitat Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocom-posite. Carbohydr Polym 87:644–649 Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocom-posite. Carbohydr Polym 87:644–649
33.
Zurück zum Zitat Bae E, Park HJ, Yoon J, Kim Y, Choi K, Yi J (2011) Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3, Korean. J Chem Eng 28:267–271 Bae E, Park HJ, Yoon J, Kim Y, Choi K, Yi J (2011) Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3, Korean. J Chem Eng 28:267–271
34.
Zurück zum Zitat Rouabhia M, Asselin JM, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446 Rouabhia M, Asselin JM, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446
35.
Zurück zum Zitat Wang J, Zhu Y, Du J (2011) Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol 11:285 Wang J, Zhu Y, Du J (2011) Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol 11:285
36.
Zurück zum Zitat Brown AJ (1886) J Chem Soc 49, 51:172, 432, 643 Brown AJ (1886) J Chem Soc 49, 51:172, 432, 643
37.
38.
Zurück zum Zitat Tarr HLA, Hibbery H (1931) Can J Res 4:372 Tarr HLA, Hibbery H (1931) Can J Res 4:372
39.
Zurück zum Zitat Hestrin S, Aschner M, Mager J (1947) Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature Lond 159:64 Hestrin S, Aschner M, Mager J (1947) Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature Lond 159:64
40.
Zurück zum Zitat Steinbuhel A (2001) Bacterial cellulose. Biopolymers. Wiley, Weinheim Steinbuhel A (2001) Bacterial cellulose. Biopolymers. Wiley, Weinheim
41.
Zurück zum Zitat Amano Y, Ito F, Kanda T (2005) Novel cellulose producing system by microorganisms such as Acetobacter sp. J Biol Macromol 5:3–10 Amano Y, Ito F, Kanda T (2005) Novel cellulose producing system by microorganisms such as Acetobacter sp. J Biol Macromol 5:3–10
42.
Zurück zum Zitat Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with plasma membrane. Proc Natl Acad Sci 73:143–147 Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with plasma membrane. Proc Natl Acad Sci 73:143–147
43.
Zurück zum Zitat Evans BR, O‘Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923 Evans BR, O‘Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923
44.
Zurück zum Zitat Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in gluconacetobacter xylinus cellulose and Cellulose/Pectin composite. J Agric Food Chem 51:981–986 Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in gluconacetobacter xylinus cellulose and Cellulose/Pectin composite. J Agric Food Chem 51:981–986
45.
Zurück zum Zitat Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506 Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506
46.
Zurück zum Zitat Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29:1098–1104 Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29:1098–1104
47.
Zurück zum Zitat Ha JH, Park JK (2012) Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii, Korean. J Chem Eng 29:563–566 Ha JH, Park JK (2012) Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii, Korean. J Chem Eng 29:563–566
48.
Zurück zum Zitat Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105(4):740–747 Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105(4):740–747
49.
Zurück zum Zitat Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180 Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180
50.
Zurück zum Zitat Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665 Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665
51.
Zurück zum Zitat Tse ML, Chung KM, Dong L, Thomas BK, Fu LB, Cheng KC, Lu C, Tam HY (2010) Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating. Opt Express 18(16):17373–17381 Tse ML, Chung KM, Dong L, Thomas BK, Fu LB, Cheng KC, Lu C, Tam HY (2010) Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating. Opt Express 18(16):17373–17381
52.
Zurück zum Zitat Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146 Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146
53.
Zurück zum Zitat Okiyama A, Shirae H, Kano H, Yamanaka S (1992) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6(5):471–477 Okiyama A, Shirae H, Kano H, Yamanaka S (1992) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6(5):471–477
54.
Zurück zum Zitat Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129 Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129
55.
Zurück zum Zitat Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489 Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489
56.
Zurück zum Zitat Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734 Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734
57.
Zurück zum Zitat Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25(24):2055–2059 Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25(24):2055–2059
58.
Zurück zum Zitat Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotech Bioch 59(8):1498–1502 Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotech Bioch 59(8):1498–1502
59.
Zurück zum Zitat Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38(1):41–47 Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38(1):41–47
60.
Zurück zum Zitat Kim JY, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537 Kim JY, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537
61.
Zurück zum Zitat Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Mioekiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195 Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Mioekiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195
62.
Zurück zum Zitat Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271 Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271
63.
Zurück zum Zitat Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36 Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36
64.
Zurück zum Zitat Chao YP, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11(11):829–832 Chao YP, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11(11):829–832
65.
Zurück zum Zitat Chao YP, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352 Chao YP, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352
66.
Zurück zum Zitat Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(Pt 2):125–132 Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(Pt 2):125–132
67.
Zurück zum Zitat Chao Y, Sugano Y, Shoda M (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-L, internal-loop airlift reactor. Appl Microbiol Biotechnol 55(6):673–679 Chao Y, Sugano Y, Shoda M (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-L, internal-loop airlift reactor. Appl Microbiol Biotechnol 55(6):673–679
68.
Zurück zum Zitat Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58(6):756–760 Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58(6):756–760
69.
Zurück zum Zitat Lin SP, Cheng KC (2012) Bacterial cellulose production by Gluconacetobacter xylinum in the rotating PCS semicontinuous bioreactor and its materials property analysis. In: Paper presented at the 2012 mini symposium frontiers in biotechnology, National Taiwan University, Taipei Lin SP, Cheng KC (2012) Bacterial cellulose production by Gluconacetobacter xylinum in the rotating PCS semicontinuous bioreactor and its materials property analysis. In: Paper presented at the 2012 mini symposium frontiers in biotechnology, National Taiwan University, Taipei
70.
Zurück zum Zitat Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12 Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12
71.
Zurück zum Zitat Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley, Hoboken Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley, Hoboken
72.
Zurück zum Zitat Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58 Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58
73.
Zurück zum Zitat Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S (1996) Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotechnol Biochem 60:1377–1379 Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S (1996) Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotechnol Biochem 60:1377–1379
74.
Zurück zum Zitat Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: Complementation of cellulose-negative mutant by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217:26–30 Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: Complementation of cellulose-negative mutant by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217:26–30
75.
Zurück zum Zitat Brown RM, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67 Brown RM, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67
76.
Zurück zum Zitat Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270 Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270
77.
Zurück zum Zitat Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569 Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569
78.
Zurück zum Zitat Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777 Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777
79.
Zurück zum Zitat Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77:6678–6682 Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77:6678–6682
80.
Zurück zum Zitat Delmer DP (1987) Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290 Delmer DP (1987) Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290
81.
Zurück zum Zitat Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146 Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146
82.
Zurück zum Zitat Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106 Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106
83.
Zurück zum Zitat Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261 Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261
84.
Zurück zum Zitat Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200 Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200
85.
Zurück zum Zitat Kuga S, Takagi S, Brown RM (1993) Native folded chain cellulose II. Polymer 34:3293–3297 Kuga S, Takagi S, Brown RM (1993) Native folded chain cellulose II. Polymer 34:3293–3297
86.
Zurück zum Zitat Thompson NS, Carlson JA, Kaustinen HM, Uhlin KI (1988) Tunnel structures in Acetobacter xylinum. Int J Biol Macromol 10:126–127 Thompson NS, Carlson JA, Kaustinen HM, Uhlin KI (1988) Tunnel structures in Acetobacter xylinum. Int J Biol Macromol 10:126–127
87.
Zurück zum Zitat Yamamoto H, Horii F, Hirai A (2006) Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 13:327–342 Yamamoto H, Horii F, Hirai A (2006) Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 13:327–342
88.
Zurück zum Zitat Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447 Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447
89.
Zurück zum Zitat Czaja W, Krystynowicz A, Bielecki S, Brown RJ (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151 Czaja W, Krystynowicz A, Bielecki S, Brown RJ (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151
90.
Zurück zum Zitat Czaja W, Krystynowicz A, Kawecki M, Wysota K, Sakiel S, Wroblewski P, Glik J, Nowak P, Bielecki S (2007) In Cellulose: Molecular and Structural Biology; Brown RM, Saxena IM, Eds, Springer Dordrecht: The Netherlands Czaja W, Krystynowicz A, Kawecki M, Wysota K, Sakiel S, Wroblewski P, Glik J, Nowak P, Bielecki S (2007) In Cellulose: Molecular and Structural Biology; Brown RM, Saxena IM, Eds, Springer Dordrecht: The Netherlands
91.
Zurück zum Zitat Czaja W, Young DJ, Kawechi M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12 Czaja W, Young DJ, Kawechi M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12
92.
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603 Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603
93.
Zurück zum Zitat Jeon JH, Oh IK, Kee CD, Kim SJ (2010) Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sensor Actuat B Chem 146:307–313 Jeon JH, Oh IK, Kee CD, Kim SJ (2010) Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sensor Actuat B Chem 146:307–313
94.
Zurück zum Zitat Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros Ciência e Tecnologia 20:72–77 Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros Ciência e Tecnologia 20:72–77
95.
Zurück zum Zitat Stroescu M, Stoica-Guzun A, Jinga SI, Dobre T, Mihaela JI, Dobre LM (2012) Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose Korean. J Chem Eng 29:1216–1223 Stroescu M, Stoica-Guzun A, Jinga SI, Dobre T, Mihaela JI, Dobre LM (2012) Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose Korean. J Chem Eng 29:1216–1223
96.
Zurück zum Zitat Ul-Islam M, Ha Jung Hwan, Khan Taous, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92:360–366 Ul-Islam M, Ha Jung Hwan, Khan Taous, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92:360–366
97.
Zurück zum Zitat Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447 Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447
98.
Zurück zum Zitat Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596 Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596
99.
Zurück zum Zitat Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microb Biotechnol 26:125–131 Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microb Biotechnol 26:125–131
100.
Zurück zum Zitat Lin WC, Lien CC, Yeh HJ, Yub CM, Hsu S (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611 Lin WC, Lien CC, Yeh HJ, Yub CM, Hsu S (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611
101.
Zurück zum Zitat Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723 Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723
102.
Zurück zum Zitat Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacterxylinus. Cellulose 18(1573L):1583 Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacterxylinus. Cellulose 18(1573L):1583
103.
Zurück zum Zitat Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120 Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120
104.
Zurück zum Zitat Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J BIOL Eng 3:12 Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J BIOL Eng 3:12
105.
Zurück zum Zitat Maneerung T, Tokura S, Rujiravanit R (2007) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51 Maneerung T, Tokura S, Rujiravanit R (2007) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51
106.
Zurück zum Zitat Hong F, Guo X, Zhang S, Han SF, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technol 104:503–508 Hong F, Guo X, Zhang S, Han SF, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technol 104:503–508
107.
Zurück zum Zitat Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713 Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713
108.
Zurück zum Zitat Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128 Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128
109.
Zurück zum Zitat Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterialcellulose nanofibers with acrylate polymer. Biomacromols 14:2063–2073 Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterialcellulose nanofibers with acrylate polymer. Biomacromols 14:2063–2073
110.
Zurück zum Zitat Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a green route for antibacterial application. Carbohyd Polym 87:2482–2487 Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a green route for antibacterial application. Carbohyd Polym 87:2482–2487
111.
Zurück zum Zitat Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284 Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284
112.
Zurück zum Zitat Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81 Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81
113.
Zurück zum Zitat Lu X, Shen X (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohydr Polym 86:239–244 Lu X, Shen X (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohydr Polym 86:239–244
114.
Zurück zum Zitat Łaszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876 Łaszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876
115.
Zurück zum Zitat Zhang S, Luo J (2011) Preparation and properties of bacterial cellulose/alginate, blend bio-fibers. J Eng Fiber Fabr 6:69–72 Zhang S, Luo J (2011) Preparation and properties of bacterial cellulose/alginate, blend bio-fibers. J Eng Fiber Fabr 6:69–72
116.
Zurück zum Zitat Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83:1253–1256 Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83:1253–1256
117.
Zurück zum Zitat Gao F (2004) Clay/polymer composites: the story. Mater Today 7:50–55 Gao F (2004) Clay/polymer composites: the story. Mater Today 7:50–55
118.
Zurück zum Zitat Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechno 9:5105–5122 Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechno 9:5105–5122
119.
Zurück zum Zitat Kino Y, Sawa M, Kasai S, Mito M (1998) Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. J Surg Res 79:71–76 Kino Y, Sawa M, Kasai S, Mito M (1998) Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. J Surg Res 79:71–76
120.
Zurück zum Zitat Kołodziejczyk M, Pomorski L (1999) Final report on the realization of the grant no. 7 S20400407 from the Polish State Committee for Scientific Research (in Polish) Kołodziejczyk M, Pomorski L (1999) Final report on the realization of the grant no. 7 S20400407 from the Polish State Committee for Scientific Research (in Polish)
121.
Zurück zum Zitat Oster GA, Lantz K, Koehler K, Hoon R, Serafica G, Mormino R (2003) Solvent dehydrated microbially derived cellulose for in vivo implantation. U.S. Patent 6:599–518 Oster GA, Lantz K, Koehler K, Hoon R, Serafica G, Mormino R (2003) Solvent dehydrated microbially derived cellulose for in vivo implantation. U.S. Patent 6:599–518
122.
Zurück zum Zitat Hornung M, Biener R, Schmauder HP (2009) Dynamic modelling of bacterial cellulose formation. Eng Life Sci 9:342–347 Hornung M, Biener R, Schmauder HP (2009) Dynamic modelling of bacterial cellulose formation. Eng Life Sci 9:342–347
123.
Zurück zum Zitat Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029 Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029
124.
Zurück zum Zitat Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 1205:2938–2944 Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 1205:2938–2944
125.
Zurück zum Zitat Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696 Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696
126.
Zurück zum Zitat Cai ZJ, Hou CW, Yang G (2011) Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 872:1073–1080 Cai ZJ, Hou CW, Yang G (2011) Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 872:1073–1080
127.
Zurück zum Zitat Eming SA, Smola H, Krieg T (2002) The treatment of chronic wounds: current concepts and future aspects. Cells Tissues Organs 172:105–117 Eming SA, Smola H, Krieg T (2002) The treatment of chronic wounds: current concepts and future aspects. Cells Tissues Organs 172:105–117
128.
Zurück zum Zitat Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544 Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544
129.
Zurück zum Zitat Slêzak A, Kucharzewski M, Franek A, Twardokês W (2004) Evaluation of the efficiency of venous ulcer treatment with a membrane dressing. Med Eng Phys 26:53–60 Slêzak A, Kucharzewski M, Franek A, Twardokês W (2004) Evaluation of the efficiency of venous ulcer treatment with a membrane dressing. Med Eng Phys 26:53–60
130.
Zurück zum Zitat Fontana JD, de Sousa AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Sousa SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24(25):253–264 Fontana JD, de Sousa AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Sousa SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24(25):253–264
131.
Zurück zum Zitat Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC (1990) Tratamento das ulceras troficas dos membros com um novo substitute da pele. Rev Bras Cir 80:4 Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC (1990) Tratamento das ulceras troficas dos membros com um novo substitute da pele. Rev Bras Cir 80:4
132.
Zurück zum Zitat Alvarez O, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233 Alvarez O, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233
133.
Zurück zum Zitat Frankel VH, Serafica GC, Damien CJ (2004) Development and testing of a novel biosynthesized XCell for treating chronic wounds. Surg Technol Int 12:27–33 Frankel VH, Serafica GC, Damien CJ (2004) Development and testing of a novel biosynthesized XCell for treating chronic wounds. Surg Technol Int 12:27–33
134.
Zurück zum Zitat Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture: a new bacterial cellulose substrate Cytotechnology 13:107–114 Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture: a new bacterial cellulose substrate Cytotechnology 13:107–114
135.
Zurück zum Zitat Deng HW, Liu YZ (2005) Current topics in bone biology. World Scientific, Hackensack, pp 125–128 Deng HW, Liu YZ (2005) Current topics in bone biology. World Scientific, Hackensack, pp 125–128
136.
Zurück zum Zitat Zimmermann KA, LeBlanc JM, Sheets KT, Robert W, Gatenholm FP (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49 Zimmermann KA, LeBlanc JM, Sheets KT, Robert W, Gatenholm FP (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49
137.
Zurück zum Zitat Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149 Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149
138.
Zurück zum Zitat Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regenerative Med 2:320–330 Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regenerative Med 2:320–330
139.
Zurück zum Zitat Entcheva E, Bien H, Yin L, Chun CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762 Entcheva E, Bien H, Yin L, Chun CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762
140.
Zurück zum Zitat Cho S, Almeida N (2012) Dietary fiber and health. CRC Press, Boca Raton Cho S, Almeida N (2012) Dietary fiber and health. CRC Press, Boca Raton
141.
Zurück zum Zitat Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545 Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545
142.
Zurück zum Zitat Phisalaphong M, Chiaoprakobkij N (2012) Applications and products-dNata de coco. Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton 9:143 Phisalaphong M, Chiaoprakobkij N (2012) Applications and products-dNata de coco. Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton 9:143
143.
Zurück zum Zitat Lin KW, Lin HY (2004) Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 69:107–111 Lin KW, Lin HY (2004) Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 69:107–111
144.
Zurück zum Zitat Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface modified microcrystalline cellulose. J Mater Chem 22:15732–15739 Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface modified microcrystalline cellulose. J Mater Chem 22:15732–15739
145.
Zurück zum Zitat Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biot 79:79–84 Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biot 79:79–84
146.
Zurück zum Zitat Jantarat C, Tangthong N, Songkro S, Martin GP, Suedee R (2008) S-Propranolol imprinted polymer nanoparticle-on-microsphere compositeporous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int J Pharm 349:212–225 Jantarat C, Tangthong N, Songkro S, Martin GP, Suedee R (2008) S-Propranolol imprinted polymer nanoparticle-on-microsphere compositeporous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int J Pharm 349:212–225
147.
Zurück zum Zitat Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantio selective controlled-release system of racemic propranolol. J Control Release 113:43–56 Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantio selective controlled-release system of racemic propranolol. J Control Release 113:43–56
148.
Zurück zum Zitat Okahisa Y, Yoshida A, Miyagushi S, Yano H (2009) Optically transparent wood cellulose nanocomposite as a base substrate for flexible organic light emitting displays. Compos Sci Technol 69:1958–1961 Okahisa Y, Yoshida A, Miyagushi S, Yano H (2009) Optically transparent wood cellulose nanocomposite as a base substrate for flexible organic light emitting displays. Compos Sci Technol 69:1958–1961
149.
Zurück zum Zitat Shah J, Brown RM Jr (2005) Towards electronic displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355 Shah J, Brown RM Jr (2005) Towards electronic displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355
150.
Zurück zum Zitat Legnini C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020 Legnini C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020
151.
Zurück zum Zitat Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845 Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845
152.
Zurück zum Zitat Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107 Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107
153.
Zurück zum Zitat Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymermatrix. Appl Phy Lett 87:243110. doi:10.1063/1.2146056 Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymermatrix. Appl Phy Lett 87:243110. doi:10.​1063/​1.​2146056
154.
Zurück zum Zitat Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91 Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91
155.
Zurück zum Zitat Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196 Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196
156.
Zurück zum Zitat Pinto RJB, Marques PA, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512 Pinto RJB, Marques PA, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512
157.
Zurück zum Zitat Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y et al (2010) Biotemplatedsynthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160 Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y et al (2010) Biotemplatedsynthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160
158.
Zurück zum Zitat Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864 Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864
159.
Zurück zum Zitat Perotti GF, Barud HS, Messaddeq Y, Ribeiro SJL, Constantino VRL (2011) Bacterial cellulose-laponite clay nanocomposites. Polymer 52(1):157–163 Perotti GF, Barud HS, Messaddeq Y, Ribeiro SJL, Constantino VRL (2011) Bacterial cellulose-laponite clay nanocomposites. Polymer 52(1):157–163
160.
Zurück zum Zitat Mathew AP, Oksman K, Pierron D, Harmand M-F (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87(3):2291–2298 Mathew AP, Oksman K, Pierron D, Harmand M-F (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87(3):2291–2298
161.
Zurück zum Zitat Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59 Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59
162.
Zurück zum Zitat Wang Y Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946 Wang Y Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946
163.
Zurück zum Zitat Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434 Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434
164.
Zurück zum Zitat Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252(18):6360–6367 Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252(18):6360–6367
Metadaten
Titel
Synthesis, Chemistry, and Medical Application of Bacterial Cellulose Nanocomposites
verfasst von
Mazhar Ul-Islam
Shaukat Khan
Waleed Ahmad Khattak
Muhammad Wajid Ullah
Joong Kon Park
Copyright-Jahr
2015
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-2473-0_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.