Skip to main content
Erschienen in: Cellulose 2/2020

06.11.2019 | Original Research

Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation

verfasst von: Yuxiang Zhao, Bianjing Sun, Tao Wang, Luyu Yang, Xuran Xu, Chuntao Chen, Feng Wei, Wenlu Lv, Lei Zhang, Dongping Sun

Erschienen in: Cellulose | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacteria cellulose (BC) generated by Acetobacter xylinum is made up of three-dimensional network of ribbon-shaped nanofibers and serves as a promising matrix for composite materials. Lately different types of nanoparticles have been adopted to modify BC via chemical reactions or physical adsorption, which usually require two steps or more and could not modify BC homogeneously. In this study we provide a one-step in situ biomineralization method during microbial fermentation to produce BC–silica nanocomposites with control over silica content. By statically culturing Acetobacter xylinum in the medium containing various amounts of sodium silicate, the slightly acidic culture environment due to consumption of glucose during fermentation could transfer sodium silicate to amorphous silica deposition that is evenly distributed on BC. The BC–silica nanocomposites obtained by this method possess superior mechanical properties such as high tensile strength and Young’s modulus, which are potential candidates for future biomedical applications. With the analysis of elemental abundance and chemical structures, we propose the synthetic mechanism of in situ production of BC–silica nanocomposites. This method is an efficient, controllable and environmental-friendly method to synthesize BC–silica nanocomposites, which also provides insights to other BC-inorganic hybrid composites and microbial modifications by microbial synthetic systems.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92A(1):9–17CrossRef Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res Part A 92A(1):9–17CrossRef
Zurück zum Zitat Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17(10):409–421PubMedCrossRef Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17(10):409–421PubMedCrossRef
Zurück zum Zitat Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149PubMedCrossRef Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149PubMedCrossRef
Zurück zum Zitat Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46(3):363–367CrossRef Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2008) Bacterial cellulose–silica organic–inorganic hybrids. J Sol-Gel Sci Technol 46(3):363–367CrossRef
Zurück zum Zitat Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91CrossRef Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23(1):57–91CrossRef
Zurück zum Zitat Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L (2019) Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Minerals 9(2):68CrossRef Chen Y, Feng Y, Deveaux JG, Masoud MA, Chandra FS, Chen H, Zhang D, Feng L (2019) Biomineralization forming process and bio-inspired nanomaterials for biomedical application: a review. Minerals 9(2):68CrossRef
Zurück zum Zitat Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12PubMedCrossRef
Zurück zum Zitat Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):437PubMedPubMedCentralCrossRef Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):437PubMedPubMedCentralCrossRef
Zurück zum Zitat Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646PubMedCrossRef Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646PubMedCrossRef
Zurück zum Zitat Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270CrossRef
Zurück zum Zitat Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19(12):1589–1593CrossRef Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19(12):1589–1593CrossRef
Zurück zum Zitat Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRef Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindström T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRef
Zurück zum Zitat Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091PubMedCrossRef Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091PubMedCrossRef
Zurück zum Zitat Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18(1):143–149CrossRef Litschauer M, Neouze M-A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F (2011) Silica modified cellulosic aerogels. Cellulose 18(1):143–149CrossRef
Zurück zum Zitat Lustri W, Barud H, Barud H, Peres M, Gutierrez J, Tercjak A, Oliveira Junior O, Ribeiro S (2015) Microbial cellulose—biosynthesis mechanisms and medical applications In: Cellulose—fundamental aspects and current trends. Matheus Poletto and Heitor Luiz Ornaghi Junior, IntechOpen. https://doi.org/10.5772/61797 Lustri W, Barud H, Barud H, Peres M, Gutierrez J, Tercjak A, Oliveira Junior O, Ribeiro S (2015) Microbial cellulose—biosynthesis mechanisms and medical applications In: Cellulose—fundamental aspects and current trends. Matheus Poletto and Heitor Luiz Ornaghi Junior, IntechOpen. https://​doi.​org/​10.​5772/​61797
Zurück zum Zitat Mohammadkazemi F, Faria M, Cordeiro N (2016) In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process. Mater Sci Eng C 65:393–399CrossRef Mohammadkazemi F, Faria M, Cordeiro N (2016) In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: one-step process. Mater Sci Eng C 65:393–399CrossRef
Zurück zum Zitat Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687CrossRef Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37(20):7683–7687CrossRef
Zurück zum Zitat Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584PubMedCrossRef Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584PubMedCrossRef
Zurück zum Zitat Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28(2):526–532PubMedCrossRef Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28(2):526–532PubMedCrossRef
Zurück zum Zitat Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106PubMedCrossRef Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA (2017) Bacterial cellulose in biomedical applications: a review. Int J Biol Macromol 104:97–106PubMedCrossRef
Zurück zum Zitat Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4(57):30453–30461CrossRef Sai H, Xing L, Xiang J, Cui L, Jiao J, Zhao C, Li Z, Li F, Zhang T (2014) Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv 4(57):30453–30461CrossRef
Zurück zum Zitat Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A (2016) Bacterial cellulose composites loaded with SiO2 nanoparticles: dynamic-mechanical and thermal properties. Int J Biol Macromol 93:672–677PubMedCrossRef Sheykhnazari S, Tabarsa T, Ashori A, Ghanbari A (2016) Bacterial cellulose composites loaded with SiO2 nanoparticles: dynamic-mechanical and thermal properties. Int J Biol Macromol 93:672–677PubMedCrossRef
Zurück zum Zitat Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383CrossRef Stumpf TR, Yang X, Zhang J, Cao X (2018) In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C 82:372–383CrossRef
Zurück zum Zitat Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, Sun DP (2018) Study of specific metabolic pattern of Acetobacter xylinum NUST4.2 and bacterial cellulose production improvement. Cellul Chem Technol 52(9–10):795–801 Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, Sun DP (2018) Study of specific metabolic pattern of Acetobacter xylinum NUST4.2 and bacterial cellulose production improvement. Cellul Chem Technol 52(9–10):795–801
Zurück zum Zitat Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 16(3):1040–1049PubMedCrossRef Wei L, McDonald AG, Stark NM (2015) Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide. Biomacromolecules 16(3):1040–1049PubMedCrossRef
Zurück zum Zitat Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487CrossRef Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohyd Polym 87(4):2482–2487CrossRef
Zurück zum Zitat Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2007) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRef Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2007) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRef
Zurück zum Zitat Yin N, Chen S-y, Ouyang Y, Tang L, Yang J-x, Wang H-p (2011) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 21(6):472–477CrossRef Yin N, Chen S-y, Ouyang Y, Tang L, Yang J-x, Wang H-p (2011) Biomimetic mineralization synthesis of hydroxyapatite bacterial cellulose nanocomposites. Prog Nat Sci Mater Int 21(6):472–477CrossRef
Zurück zum Zitat Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20(7):1152–1160CrossRef Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20(7):1152–1160CrossRef
Zurück zum Zitat Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483PubMedCrossRef Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483PubMedCrossRef
Zurück zum Zitat Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49CrossRef Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49CrossRef
Metadaten
Titel
Synthesis of cellulose–silica nanocomposites by in situ biomineralization during fermentation
verfasst von
Yuxiang Zhao
Bianjing Sun
Tao Wang
Luyu Yang
Xuran Xu
Chuntao Chen
Feng Wei
Wenlu Lv
Lei Zhang
Dongping Sun
Publikationsdatum
06.11.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02824-z

Weitere Artikel der Ausgabe 2/2020

Cellulose 2/2020 Zur Ausgabe