Skip to main content
Erschienen in: Journal of Materials Science 4/2019

19.10.2018 | Chemical routes to materials

Synthesis of CeO2-modified activated carbon spheres by grafting and coordinating reactions for elemental mercury removal

verfasst von: Changming Zhang, Wen Song, Xiaochao Zhang, Rui Li, Songjian Zhao, Caimei Fan

Erschienen in: Journal of Materials Science | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Series of resin-based activated carbon spheres with well-dispersed CeO2 particles inside and high surface area were successfully prepared by the grafting of MMA and coordinating reactions of cerium(III) nitrate salt and steam activation. N2 adsorption isotherms, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction-meter and X-ray photoelectron spectroscopy were applied to study the textural and surface characteristics of the obtained activated carbon spheres, and the Hg0 removal performances were evaluated in a fixed bed reactor. The experimental results indicated that pore structure, surface chemical properties and Hg0 removal ability of activated carbon spheres were observably improved after the modification of grafting and coordinating reactions. The optimal cerium(III) nitrate loading value, reaction temperature and O2 content were 7%, 150 °C and 5%, respectively. Moreover, SO2 showed an obvious inhibitory effect on the Hg0 removal efficiency in the absence of O2, while it facilitated the Hg0 removal in the presence of O2. Nitrogen monoxide promoted the Hg0 removal with or without O2, while water vapor inhibited the Hg0 removal over ACS-M-7%Ce. In addition, both of stable removal performance and excellent recycling ability were shown for ACS-M-7%Ce in ten cycles. The Hg0 removal mechanism analysis indicated that introduced CeO2 significantly promoted the Hg0 removal ability of ACS-M-7%Ce by generating the active species (such as C=O or C–O) and the lattice oxygen through the Ce4+/Ce3+ redox couple, and catalytically oxidized Hg0 into HgO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gaffney JS, Marley N (2014) In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Inter J Nanomed 9:1883–1889 Gaffney JS, Marley N (2014) In-depth review of atmospheric mercury: sources, transformations, and potential sinks. Inter J Nanomed 9:1883–1889
2.
Zurück zum Zitat Xu W, Adewuyi YG, Liu YX et al (2018) Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Process Technol 170:21–31CrossRef Xu W, Adewuyi YG, Liu YX et al (2018) Removal of elemental mercury from flue gas using CuOx and CeO2 modified rice straw chars enhanced by ultrasound. Fuel Process Technol 170:21–31CrossRef
3.
Zurück zum Zitat Xie YE, Li CT, Zhao LK et al (2015) Experimental study on Hg0 removal from flue gas over columnar MnOx–CeO2/activated coke. Appl Surf Sci 333:59–67CrossRef Xie YE, Li CT, Zhao LK et al (2015) Experimental study on Hg0 removal from flue gas over columnar MnOx–CeO2/activated coke. Appl Surf Sci 333:59–67CrossRef
4.
Zurück zum Zitat Liu YX, Wang Q, Pan JF et al (2015) A study on removal of elemental mercury in flue gas using fenton solution. J Hazard Mater 292:164–172CrossRef Liu YX, Wang Q, Pan JF et al (2015) A study on removal of elemental mercury in flue gas using fenton solution. J Hazard Mater 292:164–172CrossRef
5.
Zurück zum Zitat Wang SX, Zhang L, Zhao B et al (2012) Mitigation potential of mercury emission form coal-fired power plants in China. Energy Fuels 26:4635–4642CrossRef Wang SX, Zhang L, Zhao B et al (2012) Mitigation potential of mercury emission form coal-fired power plants in China. Energy Fuels 26:4635–4642CrossRef
6.
Zurück zum Zitat Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983CrossRef Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983CrossRef
7.
Zurück zum Zitat Zhao B, Yi HH, Tang XL et al (2016) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593CrossRef Zhao B, Yi HH, Tang XL et al (2016) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593CrossRef
8.
Zurück zum Zitat Wang FY, Wang SX, Zhang L et al (2016) Characteristics of mercury cycling in the cement production process. J Hazard Mater 302:27–35CrossRef Wang FY, Wang SX, Zhang L et al (2016) Characteristics of mercury cycling in the cement production process. J Hazard Mater 302:27–35CrossRef
9.
Zurück zum Zitat Li GL, Shen BX, Wang SJ et al (2015) Comparative study of elemental mercury removal by three bio-chars from various solid wastes. Fuel 145:189–195CrossRef Li GL, Shen BX, Wang SJ et al (2015) Comparative study of elemental mercury removal by three bio-chars from various solid wastes. Fuel 145:189–195CrossRef
10.
Zurück zum Zitat He C, Shen BX, Chen JH et al (2014) Adsorption and oxidation of elemental mercury over Ce–MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898CrossRef He C, Shen BX, Chen JH et al (2014) Adsorption and oxidation of elemental mercury over Ce–MnOx/Ti-PILCs. Environ Sci Technol 48:7891–7898CrossRef
11.
Zurück zum Zitat Li GL, Shen BX, Li BX et al (2015) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50CrossRef Li GL, Shen BX, Li BX et al (2015) Elemental mercury removal using biochar pyrolyzed from municipal solid waste. Fuel Process Technol 133:43–50CrossRef
12.
Zurück zum Zitat Zhang YS, Duan W, Liu Z et al (2014) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280CrossRef Zhang YS, Duan W, Liu Z et al (2014) Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128:274–280CrossRef
13.
Zurück zum Zitat Wu H, Liu H, Wang QH et al (2013) Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere. Proc Combust Inst 34:2847–2854CrossRef Wu H, Liu H, Wang QH et al (2013) Experimental study of homogeneous mercury oxidation under O2/CO2 atmosphere. Proc Combust Inst 34:2847–2854CrossRef
14.
Zurück zum Zitat Guo YF, Yan NQ, Yang SJ et al (2012) Conversion of elemental mercury with a novel membrane catalytic system at low temperature. J Hazard Mater 213–214:62–70CrossRef Guo YF, Yan NQ, Yang SJ et al (2012) Conversion of elemental mercury with a novel membrane catalytic system at low temperature. J Hazard Mater 213–214:62–70CrossRef
15.
Zurück zum Zitat Zhao Y, Hao RL, Zhang P et al (2014) An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8. Fuel 13:113–121CrossRef Zhao Y, Hao RL, Zhang P et al (2014) An integrative process for Hg0 removal using vaporized H2O2/Na2S2O8. Fuel 13:113–121CrossRef
16.
Zurück zum Zitat Yang S, Zhang JY, Zhao YC et al (2010) Pre-investigation of nanostructured TiO2-activated carbon composites for photocatalytic oxidation removal of mercury vapor. J Eng Thermophys 31:339–342 Yang S, Zhang JY, Zhao YC et al (2010) Pre-investigation of nanostructured TiO2-activated carbon composites for photocatalytic oxidation removal of mercury vapor. J Eng Thermophys 31:339–342
17.
Zurück zum Zitat Wang JC, Zhang YP, Han L et al (2013) Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103:73–79CrossRef Wang JC, Zhang YP, Han L et al (2013) Simultaneous removal of hydrogen sulfide and mercury from simulated syngas by iron-based sorbents. Fuel 103:73–79CrossRef
18.
Zurück zum Zitat Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasification systems. Fuel 89:838–847CrossRef Pavlish JH, Hamre LL, Zhuang Y (2010) Mercury control technologies for coal combustion and gasification systems. Fuel 89:838–847CrossRef
19.
Zurück zum Zitat Xu WQ, Wang HR, Zhu TY et al (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sc 25:393–398CrossRef Xu WQ, Wang HR, Zhu TY et al (2013) Mercury removal from coal combustion flue gas by modified fly ash. J Environ Sc 25:393–398CrossRef
20.
Zurück zum Zitat Mullett M, Pendleto P, Badalyan A (2012) Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chem Eng J 211:133–142CrossRef Mullett M, Pendleto P, Badalyan A (2012) Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chem Eng J 211:133–142CrossRef
21.
Zurück zum Zitat Lee SJ, Seo Y, Lee TG (2004) Removal of gas-phase elemental mercury by iodine and chlorine-impregnated activated carbons. Atmos Environ 38:4887–4893CrossRef Lee SJ, Seo Y, Lee TG (2004) Removal of gas-phase elemental mercury by iodine and chlorine-impregnated activated carbons. Atmos Environ 38:4887–4893CrossRef
22.
Zurück zum Zitat Mei Z, Shen Z, Zhao Q et al (2008) Removal and recovery of gas-phase mercury by metal oxide-loaded activated carbon. J Hazard Mater 152:721–729CrossRef Mei Z, Shen Z, Zhao Q et al (2008) Removal and recovery of gas-phase mercury by metal oxide-loaded activated carbon. J Hazard Mater 152:721–729CrossRef
23.
Zurück zum Zitat Yang S, Guo Y, Yan N et al (2011) Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. J Hazard Mater 186:508–515CrossRef Yang S, Guo Y, Yan N et al (2011) Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures. J Hazard Mater 186:508–515CrossRef
24.
Zurück zum Zitat Zhou J, Hou W, Qi P et al (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062CrossRef Zhou J, Hou W, Qi P et al (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062CrossRef
25.
Zurück zum Zitat Tian L, Li C, Li Q, Zeng G, Gao Z, Li S, Fan X (2009) Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel 88:1687–1691CrossRef Tian L, Li C, Li Q, Zeng G, Gao Z, Li S, Fan X (2009) Removal of elemental mercury by activated carbon impregnated with CeO2. Fuel 88:1687–1691CrossRef
26.
Zurück zum Zitat Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, Gao H (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy Fuels 24:4250–4254CrossRef Fan X, Li C, Zeng G, Gao Z, Chen L, Zhang W, Gao H (2010) Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy Fuels 24:4250–4254CrossRef
27.
Zurück zum Zitat Hua XY, Zhou JS, Li Q, Luo ZY, Cen KF (2010) Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy Fuels 24:5426–5431CrossRef Hua XY, Zhou JS, Li Q, Luo ZY, Cen KF (2010) Gas-phase elemental mercury removal by CeO2 impregnated activated coke. Energy Fuels 24:5426–5431CrossRef
28.
Zurück zum Zitat Tao SS, Li CT, Fan XP et al (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556CrossRef Tao SS, Li CT, Fan XP et al (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556CrossRef
29.
Zurück zum Zitat Zhang CM, Song W, Sun GH et al (2014) Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel. Ind Eng Chem 53:4271–4276CrossRef Zhang CM, Song W, Sun GH et al (2014) Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel. Ind Eng Chem 53:4271–4276CrossRef
30.
Zurück zum Zitat Romero-Anaya AJ, Lillo-Ródenas MA, Linares-Solano A (2014) Activation of a spherical carbon for toluene adsorption at low concentration. Carbon 77:616–626CrossRef Romero-Anaya AJ, Lillo-Ródenas MA, Linares-Solano A (2014) Activation of a spherical carbon for toluene adsorption at low concentration. Carbon 77:616–626CrossRef
31.
Zurück zum Zitat Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303CrossRef Ludwinowicz J, Jaroniec M (2015) Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon 82:297–303CrossRef
33.
Zurück zum Zitat Li YQ, Li KX (2011) Synthesis and characterization of mesoporous carbon with narrow pore size distribution derived from rare earth–macromolecule complexes. J Appl Polym Sci 121:3466–3474CrossRef Li YQ, Li KX (2011) Synthesis and characterization of mesoporous carbon with narrow pore size distribution derived from rare earth–macromolecule complexes. J Appl Polym Sci 121:3466–3474CrossRef
34.
Zurück zum Zitat Oya A, Kimura M, Sugo T et al (1994) Antibacterial activated carbon fiber derived from methyl methacrylate-grafted phenolic resin fiber. Carbon 32:107–110CrossRef Oya A, Kimura M, Sugo T et al (1994) Antibacterial activated carbon fiber derived from methyl methacrylate-grafted phenolic resin fiber. Carbon 32:107–110CrossRef
35.
Zurück zum Zitat Zhao S, Xu HM, Mei J et al (2017) Ag–Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel 200:236–243CrossRef Zhao S, Xu HM, Mei J et al (2017) Ag–Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. Fuel 200:236–243CrossRef
36.
Zurück zum Zitat Shen W, Zheng J, Qin Z, Wang J (2003) Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. J Colloid Interface Sci 264:467–473CrossRef Shen W, Zheng J, Qin Z, Wang J (2003) Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide. J Colloid Interface Sci 264:467–473CrossRef
37.
Zurück zum Zitat Zhang CM, Song W, Sun GH, Xie LJ, Wang JL et al (2013) CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27:4818–4823CrossRef Zhang CM, Song W, Sun GH, Xie LJ, Wang JL et al (2013) CO2 capture with activated carbon grafted by nitrogenous functional groups. Energy Fuels 27:4818–4823CrossRef
38.
Zurück zum Zitat Shi DL, Lu Y, Tang Z et al (2014) Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite. Korean J Chem Eng 31:1405–1412CrossRef Shi DL, Lu Y, Tang Z et al (2014) Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite. Korean J Chem Eng 31:1405–1412CrossRef
39.
Zurück zum Zitat Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482CrossRef Sharma RK, Wooten JB, Baliga VL et al (2004) Characterization of chars from pyrolysis of lignin. Fuel 83:1469–1482CrossRef
40.
Zurück zum Zitat Choma J, Jedynak K, Fahrenholz W et al (2014) Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Appl Surf Sci 289:592–600CrossRef Choma J, Jedynak K, Fahrenholz W et al (2014) Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Appl Surf Sci 289:592–600CrossRef
41.
Zurück zum Zitat Chen SX, Chen JL, Qing WU (2006) Chemical structure modification of activated carbon fibers by cerous nitrate. New Carbon Mater 21:206–212 Chen SX, Chen JL, Qing WU (2006) Chemical structure modification of activated carbon fibers by cerous nitrate. New Carbon Mater 21:206–212
42.
Zurück zum Zitat Wu J, Zhao Z, Huang TF et al (2017) Removal of elemental mercury by Ce–Mn co-modified activated carbon catalyst. Catal Commun 93:62–66CrossRef Wu J, Zhao Z, Huang TF et al (2017) Removal of elemental mercury by Ce–Mn co-modified activated carbon catalyst. Catal Commun 93:62–66CrossRef
43.
Zurück zum Zitat Miguel SRD, Vilella JI, Jablonski EL et al (2002) Preparation of Pt catalysts supported on activated carbon felts (ACF). Appl Catal A-Gen 232:237–246CrossRef Miguel SRD, Vilella JI, Jablonski EL et al (2002) Preparation of Pt catalysts supported on activated carbon felts (ACF). Appl Catal A-Gen 232:237–246CrossRef
44.
Zurück zum Zitat Serrano-Ruiz JC, Ramos-Fernández EV, Silvestre-Albero J et al (2008) Preparation and characterization of CeO2 highly dispersed on activated carbon. Mater Res Bull 43:1850–1857CrossRef Serrano-Ruiz JC, Ramos-Fernández EV, Silvestre-Albero J et al (2008) Preparation and characterization of CeO2 highly dispersed on activated carbon. Mater Res Bull 43:1850–1857CrossRef
45.
Zurück zum Zitat Fallya F, Perrichona V, Vidal H et al (2000) Modification of the oxygen storage capacity of CeO2–ZrO2 mixed oxides after redox cycling aging. Catal Today 59:373–386CrossRef Fallya F, Perrichona V, Vidal H et al (2000) Modification of the oxygen storage capacity of CeO2–ZrO2 mixed oxides after redox cycling aging. Catal Today 59:373–386CrossRef
46.
Zurück zum Zitat Li GL, Shen BX, Li YW, Zhao B, Wang FM, He C, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169CrossRef Li GL, Shen BX, Li YW, Zhao B, Wang FM, He C, Zhang M (2015) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169CrossRef
47.
Zurück zum Zitat Shen BX, Tian LH, Li FK et al (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 272:28–37 Shen BX, Tian LH, Li FK et al (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 272:28–37
48.
Zurück zum Zitat Jun Z, Duan YF, Zhou Q et al (2016) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289CrossRef Jun Z, Duan YF, Zhou Q et al (2016) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289CrossRef
49.
Zurück zum Zitat Yang W, Liu YX, Wang Q, Pan JF (2017) Removal of elemental mercury from flue gas using straw chars modified by Mn–Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181CrossRef Yang W, Liu YX, Wang Q, Pan JF (2017) Removal of elemental mercury from flue gas using straw chars modified by Mn–Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181CrossRef
50.
Zurück zum Zitat Liu J, Qu W, Joo SW, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167CrossRef Liu J, Qu W, Joo SW, Zheng C (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167CrossRef
51.
Zurück zum Zitat Li H, Wu CY, Li Y et al (2011) CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400CrossRef Li H, Wu CY, Li Y et al (2011) CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environ Sci Technol 45:7394–7400CrossRef
52.
Zurück zum Zitat Qu Z, Xie JK, Xu HM et al (2015) Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature. Energy Fuel 29:6187–6196CrossRef Qu Z, Xie JK, Xu HM et al (2015) Regenerable sorbent with a high capacity for elemental mercury removal and recycling from the simulated flue gas at a low temperature. Energy Fuel 29:6187–6196CrossRef
53.
Zurück zum Zitat Liu J, Cheney MA, Wu F et al (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186:108–113CrossRef Liu J, Cheney MA, Wu F et al (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186:108–113CrossRef
54.
Zurück zum Zitat Xu HM, Jia JP, Guo YF et al (2018) Design of 3D MnO2/carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. J Hazard Mater 342:69–76CrossRef Xu HM, Jia JP, Guo YF et al (2018) Design of 3D MnO2/carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. J Hazard Mater 342:69–76CrossRef
55.
Zurück zum Zitat Tan Z, Sun L, Xiang J et al (2012) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50:362–371CrossRef Tan Z, Sun L, Xiang J et al (2012) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50:362–371CrossRef
56.
Zurück zum Zitat Zhu X, Gu J, Wang Y et al (2014) Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun 50:8779–8782CrossRef Zhu X, Gu J, Wang Y et al (2014) Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun 50:8779–8782CrossRef
57.
Zurück zum Zitat Wan Q, Duan L, He KB, Li JH (2011) Removal of gaseous elemental mercury over a CeO2–WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 170:512–517CrossRef Wan Q, Duan L, He KB, Li JH (2011) Removal of gaseous elemental mercury over a CeO2–WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 170:512–517CrossRef
58.
Zurück zum Zitat Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167CrossRef Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Structural characterization of CeO2–TiO2 and V2O5/CeO2–TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 107:5162–5167CrossRef
59.
Zurück zum Zitat Zhao LK, Li CT, Zhang J et al (2015) Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for ele- mental mercury oxidation in simulated coal-fired flue gas. Fuel 153:361–369CrossRef Zhao LK, Li CT, Zhang J et al (2015) Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for ele- mental mercury oxidation in simulated coal-fired flue gas. Fuel 153:361–369CrossRef
Metadaten
Titel
Synthesis of CeO2-modified activated carbon spheres by grafting and coordinating reactions for elemental mercury removal
verfasst von
Changming Zhang
Wen Song
Xiaochao Zhang
Rui Li
Songjian Zhao
Caimei Fan
Publikationsdatum
19.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-3019-4

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Science 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.