Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 19/2018

30.07.2018

Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors

verfasst von: Hui Mao, Fangfang Zhang, Xinghui Liu, Jianping Qiu, Bing Li, Zhunian Jin

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 19/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, leaf-like Co3(PO4)2 was synthesized via a simple and low-cost approach without adding any additional surfactant. Such leaf-like Co3(PO4)2 showed the high crystallinity as proved by spectra analysis. The electrochemical performance of as-synthesized Co3(PO4)2 was firstly characterized in a three-electrode system, which shows the specific capacitance of 410 F g− 1 at the current density of 1.0 A g− 1. Furthermore, flexible symmetric supercapacitor was fabricated with PVA-KOH gel electrolyte, exhibiting the specific capacitance of 165 F g− 1 at a current density of 0.5 A g− 1 with a high energy density of 52.8 Wh kg− 1 at a power density of 756 W kg− 1. This superior performance is attributed to the unique morphology and fast surface redox reaction. These excellent results suggested that Co3(PO4)2 nanoflakes are promising materials for potential application in high-performance flexible energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015)CrossRef Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 10310 (2015)CrossRef
2.
Zurück zum Zitat X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg. Chem. Front. 5, 11–28 (2018)CrossRef X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg. Chem. Front. 5, 11–28 (2018)CrossRef
3.
Zurück zum Zitat F. Ma, L. Yu, C. Xu, X. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci 9, 862–866 (2016)CrossRef F. Ma, L. Yu, C. Xu, X. Lou, Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci 9, 862–866 (2016)CrossRef
4.
Zurück zum Zitat Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. 52, 13453–13457 (2013)CrossRef Z. Yang, J. Deng, X. Chen, J. Ren, H. Peng, A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. 52, 13453–13457 (2013)CrossRef
5.
Zurück zum Zitat K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018)CrossRef K.V. Sankar, S.C. Lee, Y. Seo, C. Ray, S. Liu, A. Kundu, S.C. Jun, Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications. J. Power Sources 373, 211–219 (2018)CrossRef
6.
Zurück zum Zitat G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRef
7.
Zurück zum Zitat M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016)CrossRef M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016)CrossRef
8.
Zurück zum Zitat N. Padmanathan, H. Shao, K.M. Razeeb, Multifunctional nNickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl. Mater. Interfaces 10, 8599–8610 (2018)CrossRef N. Padmanathan, H. Shao, K.M. Razeeb, Multifunctional nNickel phosphate nano/microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl. Mater. Interfaces 10, 8599–8610 (2018)CrossRef
9.
Zurück zum Zitat N. Padmanathan, H. Shao, D. McNulty, C. O’Dwyer, K.M. Razeeb, Hierarchical NiO–In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4, 4820–4830 (2016)CrossRef N. Padmanathan, H. Shao, D. McNulty, C. O’Dwyer, K.M. Razeeb, Hierarchical NiO–In2O3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J. Mater. Chem. A 4, 4820–4830 (2016)CrossRef
10.
Zurück zum Zitat C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef
11.
Zurück zum Zitat J. Vatamanu, D. Bedrov, Capacitive energy storage: current and future challenges. J. Phys. Chem. Lett. 6, 3594–3609 (2015)CrossRef J. Vatamanu, D. Bedrov, Capacitive energy storage: current and future challenges. J. Phys. Chem. Lett. 6, 3594–3609 (2015)CrossRef
12.
Zurück zum Zitat Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors:mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRef Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors:mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRef
13.
Zurück zum Zitat R. Tamilselvi, N. Padmanathan, M. Rahulan, K. Mohana Priya, P. Sasikumar, R. Mandhakini, M, Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices. J. Mater. Sci. 29, 4869–4880 (2017) R. Tamilselvi, N. Padmanathan, M. Rahulan, K. Mohana Priya, P. Sasikumar, R. Mandhakini, M, Reduced graphene oxide (rGO): supported NiO, Co3O4 and NiCo2O4 hybrid composite on carbon cloth (CC)—bi-functional electrode/catalyst for energy storage and conversion devices. J. Mater. Sci. 29, 4869–4880 (2017)
14.
Zurück zum Zitat X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)CrossRef X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6, 232–236 (2011)CrossRef
15.
Zurück zum Zitat L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015)CrossRef L. Shen, L. Yu, H.B. Wu, X.Y. Yu, X. Zhang, X.W. Lou, Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015)CrossRef
16.
Zurück zum Zitat Y. Chen, W.K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429–436 (2017)CrossRef Y. Chen, W.K. Pang, H. Bai, T. Zhou, Y. Liu, S. Li, Z. Guo, Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 17, 429–436 (2017)CrossRef
17.
Zurück zum Zitat X. Yi, B. Dong, Y. Dong, N. Mao, L. Ding, L. Shi, R. Gao, W. Liu, G. Su, L. Cao, Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 28, 1355–1362 (2016)CrossRef X. Yi, B. Dong, Y. Dong, N. Mao, L. Ding, L. Shi, R. Gao, W. Liu, G. Su, L. Cao, Well-defined, nanostructured, amorphous metal phosphate as electrochemical pseudocapacitor materials with high capacitance. Chem. Mater. 28, 1355–1362 (2016)CrossRef
18.
Zurück zum Zitat M.C. Liu, J.J. Li, Y.X. Hu, Q.Q. Yang, L. Kang, Design and fabrication of Ni3P2O8-Co3P2O8·8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)CrossRef M.C. Liu, J.J. Li, Y.X. Hu, Q.Q. Yang, L. Kang, Design and fabrication of Ni3P2O8-Co3P2O8·8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)CrossRef
19.
Zurück zum Zitat A.A. Mirghni, M.J. Madito, T.M. Masikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017)CrossRef A.A. Mirghni, M.J. Madito, T.M. Masikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017)CrossRef
20.
Zurück zum Zitat J.J. Li, M.C. Liu, L.B. Kong, M. Shi, W. Han, L. Kang, Facile synthesis of Co3P2O8·8H2O for high-performance electrochemical energy storage. Mater. Lett. 161, 404–407 (2015)CrossRef J.J. Li, M.C. Liu, L.B. Kong, M. Shi, W. Han, L. Kang, Facile synthesis of Co3P2O8·8H2O for high-performance electrochemical energy storage. Mater. Lett. 161, 404–407 (2015)CrossRef
21.
Zurück zum Zitat H. Pang, Z. Yan, W. Wang, J. Chen, J. Zhang, H. Zheng, Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4, 5946–5953 (2012)CrossRef H. Pang, Z. Yan, W. Wang, J. Chen, J. Zhang, H. Zheng, Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. Nanoscale 4, 5946–5953 (2012)CrossRef
22.
Zurück zum Zitat H. Pang, S. Wang, W. Shao, S. Zhao, B. Yan, X. Li, S. Li, J. Chen, W. Du, Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5, 5752–5757 (2013)CrossRef H. Pang, S. Wang, W. Shao, S. Zhao, B. Yan, X. Li, S. Li, J. Chen, W. Du, Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5, 5752–5757 (2013)CrossRef
23.
Zurück zum Zitat H. Li, H. Yu, J. Zhai, L. Sun, H. Yang, S. Xie, Self-assembled 3D cobalt phosphate octahydrate architecture for supercapacitor electrodes. Mater. Lett. 152, 25–28 (2015)CrossRef H. Li, H. Yu, J. Zhai, L. Sun, H. Yang, S. Xie, Self-assembled 3D cobalt phosphate octahydrate architecture for supercapacitor electrodes. Mater. Lett. 152, 25–28 (2015)CrossRef
24.
Zurück zum Zitat Y. Tang, Z. Liu, W. Guo, T. Chen, Y. Qiao, S. Mu, Y. Zhao, F. Gao, Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016)CrossRef Y. Tang, Z. Liu, W. Guo, T. Chen, Y. Qiao, S. Mu, Y. Zhao, F. Gao, Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016)CrossRef
25.
Zurück zum Zitat H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang, H. Zheng, Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 5, 503–507 (2013)CrossRef H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang, H. Zheng, Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 5, 503–507 (2013)CrossRef
26.
Zurück zum Zitat M. Pramanik, R.R. Salunkhe, M. Imura, Y. Yamauchi, Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces 8, 9790–9797 (2016)CrossRef M. Pramanik, R.R. Salunkhe, M. Imura, Y. Yamauchi, Phosphonate-derived nanoporous metal phosphates and their superior energy storage application. ACS Appl. Mater. Interfaces 8, 9790–9797 (2016)CrossRef
27.
Zurück zum Zitat J.H. Yang, J. Tan, D. Ma, Nickel phosphate molecular sieve as electrochemical capacitors material. J. Power Sources 260, 169–173 (2014)CrossRef J.H. Yang, J. Tan, D. Ma, Nickel phosphate molecular sieve as electrochemical capacitors material. J. Power Sources 260, 169–173 (2014)CrossRef
28.
Zurück zum Zitat J. Zhao, H. Pang, J. Deng, Y. Ma, B. Yan, X. Li, S. Li, J. Chen, W. Wang, Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm 15, 5950 (2013)CrossRef J. Zhao, H. Pang, J. Deng, Y. Ma, B. Yan, X. Li, S. Li, J. Chen, W. Wang, Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm 15, 5950 (2013)CrossRef
29.
Zurück zum Zitat S. Liu, Y. Zeng, M. Zhang, S. Xie, Y. Tong, F. Cheng, X. Lu, Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 5, 21460–21466 (2017)CrossRef S. Liu, Y. Zeng, M. Zhang, S. Xie, Y. Tong, F. Cheng, X. Lu, Binder-free WS2 nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors. J. Mater. Chem. A 5, 21460–21466 (2017)CrossRef
30.
Zurück zum Zitat F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal 7, 3824–3831 (2017)CrossRef F. Yang, Y. Chen, G. Cheng, S. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal 7, 3824–3831 (2017)CrossRef
31.
Zurück zum Zitat J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017)CrossRef J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017)CrossRef
32.
Zurück zum Zitat X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl. Mater. Interfaces 9, 23222–23229 (2017)CrossRef X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl. Mater. Interfaces 9, 23222–23229 (2017)CrossRef
33.
Zurück zum Zitat D. Zhang, X. Kong, Y. Zhao, M. Jiang, X. Lei, CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices. J. Mater. Chem. A 4, 12833–12840 (2016)CrossRef D. Zhang, X. Kong, Y. Zhao, M. Jiang, X. Lei, CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices. J. Mater. Chem. A 4, 12833–12840 (2016)CrossRef
34.
Zurück zum Zitat J. Zhu, Y. Shan, T. Wang, H. Sun, Z. Zhao, L. Mei, Z. Fan, Z. Xu, I. Shakir, Y. Huang, B. Lu, X. Duan, A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016)CrossRef J. Zhu, Y. Shan, T. Wang, H. Sun, Z. Zhao, L. Mei, Z. Fan, Z. Xu, I. Shakir, Y. Huang, B. Lu, X. Duan, A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 7, 13432 (2016)CrossRef
35.
Zurück zum Zitat Y. Qian, M. Yang, F. Zhang, J. Du, K. Li, X. Lin, X. Zhu, Y. Lu, W. Wang, D.J. Kang, A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater. Charact. 142, 43–49 (2018)CrossRef Y. Qian, M. Yang, F. Zhang, J. Du, K. Li, X. Lin, X. Zhu, Y. Lu, W. Wang, D.J. Kang, A stable and highly efficient visible-light-driven hydrogen evolution porous CdS/WO3/TiO2 photocatalysts. Mater. Charact. 142, 43–49 (2018)CrossRef
36.
Zurück zum Zitat Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)CrossRef Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)CrossRef
37.
Zurück zum Zitat Y. Zhang, M. Zheng, M. Qu, M. Sun, H. Pang, Core–shell Co11(HPO3)8(OH)6-Co3O4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. J. Alloys Compd. 651, 214–221 (2015)CrossRef Y. Zhang, M. Zheng, M. Qu, M. Sun, H. Pang, Core–shell Co11(HPO3)8(OH)6-Co3O4 hybrids for high-performance flexible all-solid-state asymmetric supercapacitors. J. Alloys Compd. 651, 214–221 (2015)CrossRef
38.
Zurück zum Zitat K. Raju, K.I. Ozoemena, Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci. Rep. 5, 17629 (2015)CrossRef K. Raju, K.I. Ozoemena, Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci. Rep. 5, 17629 (2015)CrossRef
39.
Zurück zum Zitat H. Shao, N. Padmanathan, D. McNulty, K.M. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces 8, 28592–28598 (2016)CrossRef H. Shao, N. Padmanathan, D. McNulty, K.M. Razeeb, Supercapattery based on binder-free Co3(PO4)2·8H2O multilayer nano/microflakes on nickel foam. ACS Appl. Mater. Interfaces 8, 28592–28598 (2016)CrossRef
Metadaten
Titel
Synthesis of cobalt phosphate nanoflakes for high-performance flexible symmetric supercapacitors
verfasst von
Hui Mao
Fangfang Zhang
Xinghui Liu
Jianping Qiu
Bing Li
Zhunian Jin
Publikationsdatum
30.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 19/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9765-x

Weitere Artikel der Ausgabe 19/2018

Journal of Materials Science: Materials in Electronics 19/2018 Zur Ausgabe

Neuer Inhalt