Skip to main content
Erschienen in: Journal of Nanoparticle Research 10/2016

01.10.2016 | Research Paper

Synthesis of free-standing MnO2/reduced graphene oxide membranes and electrochemical investigation of their performances as anode materials for half and full lithium-ion batteries

verfasst von: Xiaojun Zhao, Gang Wang, Hui Wang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MnO2 nanotubes/reduced graphene oxide (MnO2/RGO) membranes with different MnO2 contents are successfully synthesized by a facile two-step method including vacuum filtration and subsequent thermal reduction route. The MnO2 nanotubes obtained are 38 nm in diameter and homogeneously imbedded in RGO sheets as spacers. The synthesized MnO2/RGO membranes exhibit excellent mechanical flexibilities and free-standing properties. Using the membranes directly as anode materials for lithium batteries (LIBs), the membranes for half LIBs show superb cycling stabilities and rate performances. Importantly, the electrochemical performances of MnO2/RGO membranes show a strong dependence on the MnO2 nanotube contents in the hybrids. In addition, our results show that the hybrid membranes with 49.0 wt% MnO2 nanotube in half LIBs achieve a high reversible capacity of 1006.7 mAh g−1 after 100 cycles at a current density of 0.1 A g−1, which is higher lithium storage capacity than that of reported MnO2-carbon electrodes. Furthermore, the synthesized full cell (MnO2/RGO//LiCoO2) system also exhibit excellent electrochemical performances, which can be attributed to the unique microstructures of MnO2 and GRO, coupled with the strong synergistic interaction between MnO2 nanotubes and GRO sheets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahn D, Xiao XC, Li YW, Sachdev AK, Park HW, Yu AP, Chen ZW (2014) Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. J Power Sources 212:66–72CrossRef Ahn D, Xiao XC, Li YW, Sachdev AK, Park HW, Yu AP, Chen ZW (2014) Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery. J Power Sources 212:66–72CrossRef
Zurück zum Zitat Botas C, Álvarez P, Blanco C, Santamaría R, Granda M, Ares P, Rodríguez-Reinoso F, Menéndez R (2012) The effect of the parent graphite on the structure of graphene oxide. Carbon 50(1):275–282CrossRef Botas C, Álvarez P, Blanco C, Santamaría R, Granda M, Ares P, Rodríguez-Reinoso F, Menéndez R (2012) The effect of the parent graphite on the structure of graphene oxide. Carbon 50(1):275–282CrossRef
Zurück zum Zitat Cai Z, Xu L, Yan M, Han C, He L, Hercule K, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L (2015) Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano lett 15(1):738–744CrossRef Cai Z, Xu L, Yan M, Han C, He L, Hercule K, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L (2015) Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano lett 15(1):738–744CrossRef
Zurück zum Zitat Chen R, Zhao T, Wu W, Wu F, Li L, Qian J, Xu R, Wu H, Albishri HM, Al-Bogami AS, El-Hady DA, Lu J, Amine K (2014) Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett 14(10):5899–5904CrossRef Chen R, Zhao T, Wu W, Wu F, Li L, Qian J, Xu R, Wu H, Albishri HM, Al-Bogami AS, El-Hady DA, Lu J, Amine K (2014) Free-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries. Nano Lett 14(10):5899–5904CrossRef
Zurück zum Zitat Cheng J, Li X, Wang Z, Guo H, Peng W, Hu Q (2016) Cubic CuCo2O4 microspheres with FeO nanowires link as free-standing anode for high-performance lithium ion batteries. Ceram Int 42(2):2871–2875CrossRef Cheng J, Li X, Wang Z, Guo H, Peng W, Hu Q (2016) Cubic CuCo2O4 microspheres with FeO nanowires link as free-standing anode for high-performance lithium ion batteries. Ceram Int 42(2):2871–2875CrossRef
Zurück zum Zitat Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRef
Zurück zum Zitat Chu Z, Yue C (2016) Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceram Int 42(1):820–827CrossRef Chu Z, Yue C (2016) Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceram Int 42(1):820–827CrossRef
Zurück zum Zitat Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262CrossRef
Zurück zum Zitat Feng L, Xuan Z, Zhao H, Yang B, Guo J, Su C, Chen X (2014) MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 9:1–8CrossRef Feng L, Xuan Z, Zhao H, Yang B, Guo J, Su C, Chen X (2014) MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 9:1–8CrossRef
Zurück zum Zitat Guo C, Wang M, Chen T, Lou X, Li C (2011) A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries. Adv Energy Mater 1(5):736–741CrossRef Guo C, Wang M, Chen T, Lou X, Li C (2011) A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries. Adv Energy Mater 1(5):736–741CrossRef
Zurück zum Zitat He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469CrossRef He C, Wu S, Zhao N, Shi C, Liu E, Li J (2013) Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 7:4459–4469CrossRef
Zurück zum Zitat Hu T, Sun X, Sun H, Yu M, Lu F, Liu C, Lian L (2013) Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51:322–326CrossRef Hu T, Sun X, Sun H, Yu M, Lu F, Liu C, Lian L (2013) Flexible free-standing graphene-TiO2 hybrid paper for use as lithium ion battery anode materials. Carbon 51:322–326CrossRef
Zurück zum Zitat Hu H, Yu L, Gao X, Lin Z, Lou X (2015) Hierarchical tubular structures constructed from ultrathin TiO2 (B) nanosheets for highly reversible lithium storage. Energy Environ Sci 8(5):1480–1483CrossRef Hu H, Yu L, Gao X, Lin Z, Lou X (2015) Hierarchical tubular structures constructed from ultrathin TiO2 (B) nanosheets for highly reversible lithium storage. Energy Environ Sci 8(5):1480–1483CrossRef
Zurück zum Zitat Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
Zurück zum Zitat Konar S, Hausserman U, Svensson G (2015) Intercalation compounds from LiH and graphite: relative stability of metastable stages and thermodynamic stability of dilute stage Id. Chem Mater 27:2566–2575CrossRef Konar S, Hausserman U, Svensson G (2015) Intercalation compounds from LiH and graphite: relative stability of metastable stages and thermodynamic stability of dilute stage Id. Chem Mater 27:2566–2575CrossRef
Zurück zum Zitat Kumar A, Reddy A, Mukherjee A, Dubey M, Zhan X, Singh N, Ci L, Billups W, Nagurny J, Mital G, Ajayan P (2011) Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano 5:4345–4349CrossRef Kumar A, Reddy A, Mukherjee A, Dubey M, Zhan X, Singh N, Ci L, Billups W, Nagurny J, Mital G, Ajayan P (2011) Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano 5:4345–4349CrossRef
Zurück zum Zitat Lai H, Li J, Chen Z, Huang Z (2012) Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Interfaces 4(5):2325–2328CrossRef Lai H, Li J, Chen Z, Huang Z (2012) Carbon nanohorns as a high-performance carrier for MnO2 anode in lithium-ion batteries. ACS Appl Mater Interfaces 4(5):2325–2328CrossRef
Zurück zum Zitat Li W, Xu L, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857CrossRef Li W, Xu L, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857CrossRef
Zurück zum Zitat Li L, Raji A, Tour J (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25(43):6298–6302CrossRef Li L, Raji A, Tour J (2013) Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv Mater 25(43):6298–6302CrossRef
Zurück zum Zitat Li L, Wang J, Wang Z, Tang Y, Lee C, Yang S (2014a) Assembly of MnO2 nanowires@ reduced graphene oxide hybrid with an interconnected structure for a high performance lithium ion battery. RSC Adv 4(97):54416–54421CrossRef Li L, Wang J, Wang Z, Tang Y, Lee C, Yang S (2014a) Assembly of MnO2 nanowires@ reduced graphene oxide hybrid with an interconnected structure for a high performance lithium ion battery. RSC Adv 4(97):54416–54421CrossRef
Zurück zum Zitat Li M, Tang Z, Leng M, Xue J (2014b) Flexible solid-state supercapacitor based on graphene-based hybrid films. Adv Funct Mater 24(47):7495–7502CrossRef Li M, Tang Z, Leng M, Xue J (2014b) Flexible solid-state supercapacitor based on graphene-based hybrid films. Adv Funct Mater 24(47):7495–7502CrossRef
Zurück zum Zitat Li Y, Zhang Q, Zhu J, Wei X, Shen P (2014c) An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. J Mater Chem A 2(9):3163–3168CrossRef Li Y, Zhang Q, Zhu J, Wei X, Shen P (2014c) An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. J Mater Chem A 2(9):3163–3168CrossRef
Zurück zum Zitat Liang M, Zhi J (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878CrossRef Liang M, Zhi J (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19(33):5871–5878CrossRef
Zurück zum Zitat Liu D, Zhang Q, Xiao P, Garcia B, Guo Q, Champion R, Cao G (2008) Hydrous manganese dioxide nanowall arrays growth and their Li+ ions intercalation electrochemical properties. Chem Mater 20(4):1376–1380CrossRef Liu D, Zhang Q, Xiao P, Garcia B, Guo Q, Champion R, Cao G (2008) Hydrous manganese dioxide nanowall arrays growth and their Li+ ions intercalation electrochemical properties. Chem Mater 20(4):1376–1380CrossRef
Zurück zum Zitat Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12(6):3315–3321CrossRef Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y (2012) A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12(6):3315–3321CrossRef
Zurück zum Zitat Niu C, Meng J, Han C, Zhao K, Yan M, Mai L (2014) VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett 14(5):2873–2878CrossRef Niu C, Meng J, Han C, Zhao K, Yan M, Mai L (2014) VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett 14(5):2873–2878CrossRef
Zurück zum Zitat Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRef Peng L, Peng X, Liu B, Wu C, Xie Y, Yu G (2013) Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett 13:2151–2157CrossRef
Zurück zum Zitat Peng H, Huang J, Zhao M, Zhang Q, Cheng X, Liu X (2014) Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater 24(19):2772–2781CrossRef Peng H, Huang J, Zhao M, Zhang Q, Cheng X, Liu X (2014) Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv Funct Mater 24(19):2772–2781CrossRef
Zurück zum Zitat Reddy A, Shaijumon M, Gowda S, Ajayan P (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9(3):1002–1006CrossRef Reddy A, Shaijumon M, Gowda S, Ajayan P (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9(3):1002–1006CrossRef
Zurück zum Zitat Shi J, Du W, Yin Y, Guo Y, Wan L (2014) Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. J Mater Chem A 2:10830–10834CrossRef Shi J, Du W, Yin Y, Guo Y, Wan L (2014) Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors. J Mater Chem A 2:10830–10834CrossRef
Zurück zum Zitat Thackeray M, David W, Bruce P, Goodenough J (1983) Lithium insertion into manganese spinels. J Mater Res Bull 18(4):461–472CrossRef Thackeray M, David W, Bruce P, Goodenough J (1983) Lithium insertion into manganese spinels. J Mater Res Bull 18(4):461–472CrossRef
Zurück zum Zitat Wang H, Cui L, Yang Y, Casalongue H, Robinson J, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980CrossRef Wang H, Cui L, Yang Y, Casalongue H, Robinson J, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980CrossRef
Zurück zum Zitat Wang Y, Han Z, Yu S, Song R, Song H, Ostrikov K, Yang H (2013) Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64:230–236CrossRef Wang Y, Han Z, Yu S, Song R, Song H, Ostrikov K, Yang H (2013) Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64:230–236CrossRef
Zurück zum Zitat Wang C, Wang X, Yang Y, Kushima A, Chen J, Huang Y, Li J (2015a) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15(3):1796–1802CrossRef Wang C, Wang X, Yang Y, Kushima A, Chen J, Huang Y, Li J (2015a) Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett 15(3):1796–1802CrossRef
Zurück zum Zitat Wang D, Yu Y, He H, Wang J, Zhou W, Abrua H (2015b) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781CrossRef Wang D, Yu Y, He H, Wang J, Zhou W, Abrua H (2015b) Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9(2):1775–1781CrossRef
Zurück zum Zitat Wang J, Zhang C, Kang F (2015c) Nitrogen-enriched porous carbon coating for manganese oxide nanostructures toward high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7(17):9185–9194CrossRef Wang J, Zhang C, Kang F (2015c) Nitrogen-enriched porous carbon coating for manganese oxide nanostructures toward high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7(17):9185–9194CrossRef
Zurück zum Zitat Wang R, Lang J, Zhang P, Lin Z, Yan X (2015d) Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Funct Mater 25(15):2270–2278CrossRef Wang R, Lang J, Zhang P, Lin Z, Yan X (2015d) Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Funct Mater 25(15):2270–2278CrossRef
Zurück zum Zitat Wu M, Chiang P, Lee J, Lin J (2005) Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B 109(49):23279–23284CrossRef Wu M, Chiang P, Lee J, Lin J (2005) Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B 109(49):23279–23284CrossRef
Zurück zum Zitat Wu Z, Ren W, Wen L, Cao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):318CrossRef Wu Z, Ren W, Wen L, Cao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):318CrossRef
Zurück zum Zitat Wu H, Chan G, Choi J, Yao I, McDowell M, Lee S, Jackson A, Hu Y, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315CrossRef Wu H, Chan G, Choi J, Yao I, McDowell M, Lee S, Jackson A, Hu Y, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315CrossRef
Zurück zum Zitat Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20(33):6896–6902CrossRef Xia H, Lai M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20(33):6896–6902CrossRef
Zurück zum Zitat Xia F, Kwon S, Lee W, Liu Z, Kim S, Song T, Choi KJ, Paik U, Park W (2015) Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett 15(10):6658–6664CrossRef Xia F, Kwon S, Lee W, Liu Z, Kim S, Song T, Choi KJ, Paik U, Park W (2015) Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries. Nano Lett 15(10):6658–6664CrossRef
Zurück zum Zitat Yu A, Park H, Davies A, Higgins D, Chen Z, Xiao X (2011a) Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860CrossRef Yu A, Park H, Davies A, Higgins D, Chen Z, Xiao X (2011a) Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860CrossRef
Zurück zum Zitat Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough J, Cui X, Cui Y, Bao Z (2011b) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough J, Cui X, Cui Y, Bao Z (2011b) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRef
Zurück zum Zitat Yuan L, Lu X, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang Z (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661CrossRef Yuan L, Lu X, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, Hu C, Tong Y, Zhou J, Wang Z (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661CrossRef
Zurück zum Zitat Zeng J, Wang Y, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20(48):10915–10918CrossRef Zeng J, Wang Y, Yang Y, Zhang J (2010) Synthesis of sea-urchin shaped γ-MnO2 nanostructures and their application in lithium batteries. J Mater Chem 20(48):10915–10918CrossRef
Zurück zum Zitat Zeng G, Shi N, Hess M, Wei C, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9(4):4227–4235CrossRef Zeng G, Shi N, Hess M, Wei C, Fan T, Niederberger M (2015) A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 9(4):4227–4235CrossRef
Zurück zum Zitat Zhang W, Wu X, Hu J, Guo Y, Wan L (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef Zhang W, Wu X, Hu J, Guo Y, Wan L (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18:3941–3946CrossRef
Zurück zum Zitat Zhang C, He X, Kong Q, Li H, Hu H, Wang H, Gu L, Wang L, Cui G, Chen L (2012) A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm 14(13):4344–4349CrossRef Zhang C, He X, Kong Q, Li H, Hu H, Wang H, Gu L, Wang L, Cui G, Chen L (2012) A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm 14(13):4344–4349CrossRef
Zurück zum Zitat Zhang Y, Liu H, Zhu Z, Wong K, Mi R, Mei J, Lau W (2013) A green hydrothermal approach for the preparation of graphene/α-MnO2 3D network as anode for lithium ion battery. Electrochim Acta 108:465–471CrossRef Zhang Y, Liu H, Zhu Z, Wong K, Mi R, Mei J, Lau W (2013) A green hydrothermal approach for the preparation of graphene/α-MnO2 3D network as anode for lithium ion battery. Electrochim Acta 108:465–471CrossRef
Zurück zum Zitat Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3489CrossRef Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3489CrossRef
Metadaten
Titel
Synthesis of free-standing MnO2/reduced graphene oxide membranes and electrochemical investigation of their performances as anode materials for half and full lithium-ion batteries
verfasst von
Xiaojun Zhao
Gang Wang
Hui Wang
Publikationsdatum
01.10.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 10/2016
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3511-1

Weitere Artikel der Ausgabe 10/2016

Journal of Nanoparticle Research 10/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.