Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2018

21.08.2018

Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries

verfasst von: Shanshan Yao, Sikang Xue, Sihuang Peng, Maoxiang Jing, Xinye Qian, Xiangqian Shen, Tianbao Li, Yanhua Wang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphitic carbon nitride (g-C3N4) was produced by the direct thermal-pyrolysis of urea at different temperatures without additive assistance. The physical properties of porous g-C3N4 were characterized by various measurement methods: X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ay photoelectron spectroscopy (XPS). The effect of thermal-pyrolysis temperature on electrochemical behaviors of was researched as the sulfur matrices in lithium–sulfur batteries. The g-C3N4 prepared at 550 °C with sulfur matrix exhibits the superior electrochemical performances. As the result, the sulfur/CN-550 composite cathode exhibits a high initial discharge capacity of 1262.1 mAh g−1 and delivers a specific capacity of 605.4 mAh g−1 over 500 cycles at 0.39 mA cm−2. The excellent electrochemical behavior of the g-C3N4 could be ascribed to the effective utilization of sulfur and the combination of polysulfides dissolution through physical and chemical interactions to achieve long-term circulation of the composite cathode in lithium–sulfur batteries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)CrossRef P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012)CrossRef
2.
Zurück zum Zitat A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRef A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751–11787 (2014)CrossRef
3.
Zurück zum Zitat R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng, F. Li, More reliable lithium sulfur batteries: status, solutions and prospects. Adv. Mater. 27, 1606823 (2017)CrossRef R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng, F. Li, More reliable lithium sulfur batteries: status, solutions and prospects. Adv. Mater. 27, 1606823 (2017)CrossRef
4.
Zurück zum Zitat A. Rosenaman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, Review on li-suflur battery systems: an integral prespective. Adv. Eng. Mater. 5, 1500212 (2015)CrossRef A. Rosenaman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, Review on li-suflur battery systems: an integral prespective. Adv. Eng. Mater. 5, 1500212 (2015)CrossRef
5.
Zurück zum Zitat V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2014)CrossRef V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2014)CrossRef
6.
Zurück zum Zitat A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRef A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013)CrossRef
7.
Zurück zum Zitat Y.X. Hou, J.R. Xiao, Y.F. Guo, M. Qi, A.H. Jiang, Y.W. Li, Gaseous-phase, silica-coated particles as a cathode material for high performance lithium/sulfur batteries. J. Mater. Sci. 28, 8901–8907 (2017) Y.X. Hou, J.R. Xiao, Y.F. Guo, M. Qi, A.H. Jiang, Y.W. Li, Gaseous-phase, silica-coated particles as a cathode material for high performance lithium/sulfur batteries. J. Mater. Sci. 28, 8901–8907 (2017)
8.
Zurück zum Zitat S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. 28, 7264–7270 (2017) S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. 28, 7264–7270 (2017)
9.
Zurück zum Zitat Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)CrossRef Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)CrossRef
10.
Zurück zum Zitat X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 24, 1601759 (2017)CrossRef X. Liu, J.Q. Huang, Q. Zhang, L.Q. Mai, Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 24, 1601759 (2017)CrossRef
11.
Zurück zum Zitat J.R. Xiao, H.Z. Wang, X.Y. Li, Z.Y. Wang, J.F. Ma, H. Zhao, N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci. 26, 7895–7900 (2015) J.R. Xiao, H.Z. Wang, X.Y. Li, Z.Y. Wang, J.F. Ma, H. Zhao, N-doped carbon nanotubes as cathode material in Li–S batteries. J. Mater. Sci. 26, 7895–7900 (2015)
12.
Zurück zum Zitat J.J. Zhu, P. Xiao, H.L. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6, 16449–16465 (2014)CrossRef J.J. Zhu, P. Xiao, H.L. Li, S.A.C. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6, 16449–16465 (2014)CrossRef
13.
Zurück zum Zitat J. Liang, L.C. Yin, X.N. Tang, H.C. Yang, W.S. Yan, L.S.H.M. Cheng, F. Li, Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium sulfur batteries. ACS Appl. Mater. Interfaces 8, 25193–25201 (2016)CrossRef J. Liang, L.C. Yin, X.N. Tang, H.C. Yang, W.S. Yan, L.S.H.M. Cheng, F. Li, Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium sulfur batteries. ACS Appl. Mater. Interfaces 8, 25193–25201 (2016)CrossRef
14.
Zurück zum Zitat Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium sulfur batteries on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRef Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium sulfur batteries on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)CrossRef
15.
Zurück zum Zitat M. Wang, Q.H. Liang, J.W. Han, Y. Tao, D.H. Liu, C. Zhang, W. Lv, Q.H. Yang, Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium sulfur batteries. Nano Res. 11, 3480–3489 (2018)CrossRef M. Wang, Q.H. Liang, J.W. Han, Y. Tao, D.H. Liu, C. Zhang, W. Lv, Q.H. Yang, Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium sulfur batteries. Nano Res. 11, 3480–3489 (2018)CrossRef
16.
Zurück zum Zitat Z.J. Huang, F.B. Li, B.F. Chen, T. Lu, Y. Yuan, G.Q. Yuan, Well dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl. Catal. B 136–137, 269–277 (2013)CrossRef Z.J. Huang, F.B. Li, B.F. Chen, T. Lu, Y. Yuan, G.Q. Yuan, Well dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl. Catal. B 136–137, 269–277 (2013)CrossRef
17.
Zurück zum Zitat Q. Su, J. Sun, J.Q. Wang, Z.F. Yang, W.G. Cheng, S.J. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 4, 1556–1562 (2014)CrossRef Q. Su, J. Sun, J.Q. Wang, Z.F. Yang, W.G. Cheng, S.J. Zhang, Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 4, 1556–1562 (2014)CrossRef
18.
Zurück zum Zitat J. Xu, F. Wu, Q. Jiang, Y.X. Li, Mesoporous carbon nitride grafted with n-bromobutane: a high performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal. Sci. Technol. 5, 447–454 (2015)CrossRef J. Xu, F. Wu, Q. Jiang, Y.X. Li, Mesoporous carbon nitride grafted with n-bromobutane: a high performance heterogeneous catalyst for the solvent-free cycloaddition of CO2 to propylene carbonate. Catal. Sci. Technol. 5, 447–454 (2015)CrossRef
19.
Zurück zum Zitat Y. Wang, Y. Di, M. Antonietti, H.R. Li, X. Chen, X.C. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010)CrossRef Y. Wang, Y. Di, M. Antonietti, H.R. Li, X. Chen, X.C. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010)CrossRef
20.
Zurück zum Zitat H.J. Yan, Y. Chen, S.M. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production form water under visible light. Int. J. Hydrogen Energy 37, 125–133 (2012)CrossRef H.J. Yan, Y. Chen, S.M. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production form water under visible light. Int. J. Hydrogen Energy 37, 125–133 (2012)CrossRef
21.
Zurück zum Zitat G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012)CrossRef G.H. Dong, K. Zhao, L.Z. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012)CrossRef
22.
Zurück zum Zitat Y.W. Zhang, J.H. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4, 5300–5303 (2012)CrossRef Y.W. Zhang, J.H. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale 4, 5300–5303 (2012)CrossRef
23.
Zurück zum Zitat Y.J. Sun, J.Z. Jiang, Y. Cao, Y. Liu, S.L. Wu, J. Zhou, Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photocunduction. Mater. Lett. 212, 288–291 (2018)CrossRef Y.J. Sun, J.Z. Jiang, Y. Cao, Y. Liu, S.L. Wu, J. Zhou, Facile fabrication of g-C3N4/ZnS/CuS heterojunctions with enhanced photocatalytic performances and photocunduction. Mater. Lett. 212, 288–291 (2018)CrossRef
24.
Zurück zum Zitat H. Wei, W.A. McMaster, J.Z.Y. Tan, D.H. Chen, R.A. Caruso, Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enehanced visible light photocatalysis. J. Mater. Chem. A 6, 7236–7245 (2018)CrossRef H. Wei, W.A. McMaster, J.Z.Y. Tan, D.H. Chen, R.A. Caruso, Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enehanced visible light photocatalysis. J. Mater. Chem. A 6, 7236–7245 (2018)CrossRef
25.
Zurück zum Zitat X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRef X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRef
26.
Zurück zum Zitat C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical Immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14, 1701986 (2018)CrossRef C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Chemical Immobilization effect on lithium polysulfides for lithium–sulfur batteries. Small 14, 1701986 (2018)CrossRef
27.
Zurück zum Zitat S. Huang, L. Zhang, J. Wang, J. Zhu, P.K. Shen, In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Res. 11, 1731–1743 (2018)CrossRef S. Huang, L. Zhang, J. Wang, J. Zhu, P.K. Shen, In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Res. 11, 1731–1743 (2018)CrossRef
28.
Zurück zum Zitat J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium sulfur batteries. Adv. Energy Mater. 8, 201701330 (2018) J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium sulfur batteries. Adv. Energy Mater. 8, 201701330 (2018)
29.
Zurück zum Zitat C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018)CrossRef C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018)CrossRef
30.
Zurück zum Zitat B.H. Li, C.P. Han, Y.B. He, C. Yang, H.D. Du, Q.H. Yang, F.Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)CrossRef B.H. Li, C.P. Han, Y.B. He, C. Yang, H.D. Du, Q.H. Yang, F.Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)CrossRef
31.
Zurück zum Zitat Y.J. Zhang, S.S. Yao, R.Y. Zhuang, K.J. Luan, X.Y. Qian, J. Xiang, X.Q. Shen, T.B. Li, K.S. Xiao, S.B. Qin, Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium sulfur batteries. J. Alloy. Compd. 729, 1136–1144 (2017)CrossRef Y.J. Zhang, S.S. Yao, R.Y. Zhuang, K.J. Luan, X.Y. Qian, J. Xiang, X.Q. Shen, T.B. Li, K.S. Xiao, S.B. Qin, Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium sulfur batteries. J. Alloy. Compd. 729, 1136–1144 (2017)CrossRef
32.
Zurück zum Zitat Y. Jin, G.M. Zhou, F.F. Shi, D. Zhuo, J. Zhao, K. Liu, Y.Y. Liu, C.X. Zu, W. Chen, R.F. Zhang, X.Y. Huang, Y. Cui, Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nat. Commun. 18, 462 (2017)CrossRef Y. Jin, G.M. Zhou, F.F. Shi, D. Zhuo, J. Zhao, K. Liu, Y.Y. Liu, C.X. Zu, W. Chen, R.F. Zhang, X.Y. Huang, Y. Cui, Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nat. Commun. 18, 462 (2017)CrossRef
33.
Zurück zum Zitat G. Babu, K. Ababtain, K.Y. Simon Ng, L.M.R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci. Rep. 5, 8763 (2015)CrossRef G. Babu, K. Ababtain, K.Y. Simon Ng, L.M.R. Arava, Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Sci. Rep. 5, 8763 (2015)CrossRef
34.
Zurück zum Zitat C.Y. Fan, H.Y. Yuan, H.H. Li, H.F. Wang, W.L. Li, H.Z. Sun, X.L. Wu, J.P. Zhang, The effective design of a polysulfides-trapped spearator at the molecular level for high energy density Li-S batteries. ACS Appl. Mater. Interfaces 8, 16108–16115 (2016)CrossRef C.Y. Fan, H.Y. Yuan, H.H. Li, H.F. Wang, W.L. Li, H.Z. Sun, X.L. Wu, J.P. Zhang, The effective design of a polysulfides-trapped spearator at the molecular level for high energy density Li-S batteries. ACS Appl. Mater. Interfaces 8, 16108–16115 (2016)CrossRef
35.
Zurück zum Zitat D. Q.Pang.Kundu, M.Cuisinier, L.F.Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014)CrossRef D. Q.Pang.Kundu, M.Cuisinier, L.F.Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014)CrossRef
36.
Zurück zum Zitat J.Q. Huang, B. Zhang, Z.L. Xu, S. Abouali, M.A. Garakani, J.Q. Huang, J.K. Kim, Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium sulfur batteries. J. Power Sources 285, 43–50 (2015)CrossRef J.Q. Huang, B. Zhang, Z.L. Xu, S. Abouali, M.A. Garakani, J.Q. Huang, J.K. Kim, Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium sulfur batteries. J. Power Sources 285, 43–50 (2015)CrossRef
37.
Zurück zum Zitat J.X. Song, M.L. Gordin, T. Xu, S.R. Chen, Z.X. Yu, H. Sohn, J. Lu, Y. Ren, Y.H. Duan, D.H. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high performance lithium sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRef J.X. Song, M.L. Gordin, T. Xu, S.R. Chen, Z.X. Yu, H. Sohn, J. Lu, Y. Ren, Y.H. Duan, D.H. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high performance lithium sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRef
38.
Zurück zum Zitat K. Han, J.M. Shen, S.Q. Hao, H.Q. Ye, C. Wolverton, M.C. Kung, H.H. Kung, Free-standing nitrogen-doped graphene paper as electrodes for high performance lithium/dissolved polysulfide batteries. ChemSusChem 7, 2542–2553 (2014) K. Han, J.M. Shen, S.Q. Hao, H.Q. Ye, C. Wolverton, M.C. Kung, H.H. Kung, Free-standing nitrogen-doped graphene paper as electrodes for high performance lithium/dissolved polysulfide batteries. ChemSusChem 7, 2542–2553 (2014)
Metadaten
Titel
Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium–sulfur batteries
verfasst von
Shanshan Yao
Sikang Xue
Sihuang Peng
Maoxiang Jing
Xinye Qian
Xiangqian Shen
Tianbao Li
Yanhua Wang
Publikationsdatum
21.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9906-2

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science: Materials in Electronics 20/2018 Zur Ausgabe

Neuer Inhalt