Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors

verfasst von : Lakshmanan Karuppasamy, Lakshmanan Gurusamy, Gang-Juan Lee, Jerry J. Wu

Erschienen in: Graphene Functionalization Strategies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reduced graphene oxide (RGO), atomically thin two-dimensional carbon nanosheets, owns outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These unique properties have made reduced graphene oxide an ideal platform for constructing a series of RGO-based functional nanomaterials. Specifically, RGO and RGO derivatives have been utilized as templates for the synthesis of various noble-metal/metal oxide nanocomposites. These hybrid nanocomposites materials are promising alternatives to reduce the drawback of using only transition metal nanoparticles in various applications, such as electrochemical energy storage and conversion technology of supercapacitors and fuel cells. The goal of this chapter is to discuss the state-of-the-art of reduced graphene oxide-based metal and metal oxide nanocomposites with a detailed account of their synthesis and properties. Especially, much attention has been paid to their synthesis and a wide range of applications in various fields, such as electrochemical and electrical fields. This chapter is presented first time with an introduction, followed by synthetic methods of RGO and RGO-based nanocomposites. Then, the application of this novel RGO/metal-metal oxide nanocomposites in fuel cells and supercapacitors are summarized and discussed. Finally, the future research trends and challenges of design and synthesis of RGO/metal-metal oxide nanocomposites are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
2.
Zurück zum Zitat Guo, S., Dong, S.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011)CrossRef Guo, S., Dong, S.: Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644–2672 (2011)CrossRef
3.
Zurück zum Zitat Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2009)CrossRef
4.
Zurück zum Zitat Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef Liang, H.W., Zhuang, X., Brüller, S., Feng, X., Müllen, K.: Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 5, 4973 (2014)CrossRef
5.
Zurück zum Zitat Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162 (1985)CrossRef Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(6042), 162 (1985)CrossRef
6.
Zurück zum Zitat Ajayan, P.M.: Capillarity-induced filling of carbon nanotubes. Nature 361(6410), 333 (1993)CrossRef Ajayan, P.M.: Capillarity-induced filling of carbon nanotubes. Nature 361(6410), 333 (1993)CrossRef
7.
Zurück zum Zitat Kauffman, D.R., Star, A.: Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135(11), 2790–2797 (2010)CrossRef Kauffman, D.R., Star, A.: Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 135(11), 2790–2797 (2010)CrossRef
8.
Zurück zum Zitat Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858 (2007)CrossRef Fasolino, A., Los, J.H., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6(11), 858 (2007)CrossRef
9.
Zurück zum Zitat Antonietti, M., Müllen, K.: Carbon: the sixth element. Adv. Mater. 22(7), 787 (2010)CrossRef Antonietti, M., Müllen, K.: Carbon: the sixth element. Adv. Mater. 22(7), 787 (2010)CrossRef
10.
Zurück zum Zitat Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W.: Graphene-based metal and metal oxide nanocomposites: synthesis, properties, and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015)CrossRef Khan, M., Tahir, M.N., Adil, S.F., Khan, H.U., Siddiqui, M.R.H., Al-Warthan, A.A., Tremel, W.: Graphene-based metal and metal oxide nanocomposites: synthesis, properties, and their applications. J. Mater. Chem. A 3(37), 18753–18808 (2015)CrossRef
11.
Zurück zum Zitat Zhu, C., Guo, S., Fang, Y., Han, L., Wang, E., Dong, S.: One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 4(7), 648–657 (2011)CrossRef Zhu, C., Guo, S., Fang, Y., Han, L., Wang, E., Dong, S.: One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 4(7), 648–657 (2011)CrossRef
12.
Zurück zum Zitat Zhu, C., Zhai, J., Wen, D., Dong, S.: Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22(13), 6300–6306 (2012)CrossRef Zhu, C., Zhai, J., Wen, D., Dong, S.: Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J. Mater. Chem. 22(13), 6300–6306 (2012)CrossRef
13.
Zurück zum Zitat Paek, S.M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2008)CrossRef Paek, S.M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9(1), 72–75 (2008)CrossRef
14.
Zurück zum Zitat Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef
15.
Zurück zum Zitat Porada, S., Weingarth, D., Hamelers, H.V.M., Bryjak, M., Presser, V., Biesheuvel, P.M.: Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 2, 9313–9321 (2014)CrossRef Porada, S., Weingarth, D., Hamelers, H.V.M., Bryjak, M., Presser, V., Biesheuvel, P.M.: Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A 2, 9313–9321 (2014)CrossRef
16.
Zurück zum Zitat Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)CrossRef Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013)CrossRef
17.
Zurück zum Zitat Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41, 807–878 (2011)CrossRef Singh, K., Arora, S.: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 41, 807–878 (2011)CrossRef
18.
Zurück zum Zitat Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)CrossRef Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)CrossRef
19.
Zurück zum Zitat Peng, C., et al.: Carbon nanotube and conducting polymer composites for supercapacitors. Nat. Sci. 18, 777–788 (2008) Peng, C., et al.: Carbon nanotube and conducting polymer composites for supercapacitors. Nat. Sci. 18, 777–788 (2008)
20.
Zurück zum Zitat Burke, A.: Ultra capacitors: why, how, and where is the technology. J. Power Sources 9(1), 37–50 (2000)CrossRef Burke, A.: Ultra capacitors: why, how, and where is the technology. J. Power Sources 9(1), 37–50 (2000)CrossRef
21.
Zurück zum Zitat Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Banerjee, S.K.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)CrossRef
22.
Zurück zum Zitat Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M.S., Lisi, N.: Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein J. Nanotechnol. 6, 2028 (2015)CrossRef Capasso, A., Dikonimos, T., Sarto, F., Tamburrano, A., De Bellis, G., Sarto, M.S., Lisi, N.: Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties. Beilstein J. Nanotechnol. 6, 2028 (2015)CrossRef
23.
Zurück zum Zitat Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: A simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef Subrahmanyam, K.S., Panchakarla, L.S., Govindaraj, A., Rao, C.N.R.: A simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)CrossRef
24.
Zurück zum Zitat Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406 (2008)CrossRef Sutter, P.W., Flege, J.I., Sutter, E.A.: Epitaxial graphene on ruthenium. Nat. Mater. 7(5), 406 (2008)CrossRef
25.
Zurück zum Zitat Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef Hummers Jr., W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958)CrossRef
26.
Zurück zum Zitat Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRef
27.
Zurück zum Zitat McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Aksay, I.A.: Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRef
28.
Zurück zum Zitat Sun, X., Luo, D., Liu, J., Evans, D.G.: Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6), 3381–3389 (2010)CrossRef Sun, X., Luo, D., Liu, J., Evans, D.G.: Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6), 3381–3389 (2010)CrossRef
29.
Zurück zum Zitat An, C., Wang, Y., Wang, Y., Liu, G., Li, L., Qiu, F., Yuan, H.: Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3(14), 4628–4633 (2013)CrossRef An, C., Wang, Y., Wang, Y., Liu, G., Li, L., Qiu, F., Yuan, H.: Facile synthesis and superior supercapacitor performances of Ni2P/rGO nanoparticles. RSC Adv. 3(14), 4628–4633 (2013)CrossRef
30.
Zurück zum Zitat Xu, Y., Sheng, K., Li, C., Shi, G.: Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 21(20), 7376–7380 (2011)CrossRef Xu, Y., Sheng, K., Li, C., Shi, G.: Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 21(20), 7376–7380 (2011)CrossRef
31.
Zurück zum Zitat Bera, R., Kundu, S., Patra, A.: 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015)CrossRef Bera, R., Kundu, S., Patra, A.: 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 7(24), 13251–13259 (2015)CrossRef
32.
Zurück zum Zitat Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef Gilje, S., Han, S., Wang, M., Wang, K.L., Kaner, R.B.: A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRef
33.
Zurück zum Zitat Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16(2), 155–158 (2006)CrossRef
34.
Zurück zum Zitat Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Ruoff, R.S.: Graphene-based composite materials. Nature 442(7100), 282 (2006)CrossRef
35.
Zurück zum Zitat Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)CrossRef Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)CrossRef
36.
Zurück zum Zitat Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., Yao, J.: Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008)CrossRef
37.
Zurück zum Zitat Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192 (2012)CrossRef Novoselov, K.S., Fal, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192 (2012)CrossRef
38.
Zurück zum Zitat Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)CrossRef Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008)CrossRef
39.
Zurück zum Zitat Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009)CrossRef Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009)CrossRef
40.
Zurück zum Zitat Yin, P.T., Shah, S., Chhowalla, M., Lee, K.B.: Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)CrossRef Yin, P.T., Shah, S., Chhowalla, M., Lee, K.B.: Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115(7), 2483–2531 (2015)CrossRef
41.
Zurück zum Zitat Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)CrossRef Wu, Z.S., Ren, W., Gao, L., Liu, B., Jiang, C., Cheng, H.M.: Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2), 493–499 (2009)CrossRef
42.
Zurück zum Zitat Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008)CrossRef Fan, X., Peng, W., Li, Y., Li, X., Wang, S., Zhang, G., Zhang, F.: Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008)CrossRef
43.
Zurück zum Zitat Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z. Anorg. Allg. Chem. 316(3–4), 119–127 (1962)CrossRef Boehm, H.P., Clauss, A., Fischer, G.O., Hofmann, U.: Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z. Anorg. Allg. Chem. 316(3–4), 119–127 (1962)CrossRef
44.
Zurück zum Zitat Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascon, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)CrossRef Fernández-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solís-Fernández, P., Martínez-Alonso, A., Tascon, J.M.D.: Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)CrossRef
45.
Zurück zum Zitat Han, H.J., Chen, Y.N., Wang, Z.J.: Effect of microwave irradiation on reduction of graphene oxide films. RSC Adv. 5(113), 92940–92946 (2015)CrossRef Han, H.J., Chen, Y.N., Wang, Z.J.: Effect of microwave irradiation on reduction of graphene oxide films. RSC Adv. 5(113), 92940–92946 (2015)CrossRef
46.
Zurück zum Zitat Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122 (2010)CrossRef Zhu, Y., Murali, S., Stoller, M.D., Velamakanni, A., Piner, R.D., Ruoff, R.S.: Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7), 2118–2122 (2010)CrossRef
47.
Zurück zum Zitat Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009)CrossRef Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., Dong, S.: Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem. Eur. J. 15(25), 6116–6120 (2009)CrossRef
48.
Zurück zum Zitat Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009)CrossRef Ramesha, G.K., Sampath, S.: Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009)CrossRef
49.
Zurück zum Zitat Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’Homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41 (2008)CrossRef
50.
Zurück zum Zitat Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)CrossRef Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)CrossRef
51.
Zurück zum Zitat Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)CrossRef Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)CrossRef
52.
Zurück zum Zitat Yuan, B., Bao, C., Qian, X., Wen, P., Xing, W., Song, L., Hu, Y.: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014)CrossRef Yuan, B., Bao, C., Qian, X., Wen, P., Xing, W., Song, L., Hu, Y.: A facile approach to prepare graphene via solvothermal reduction of graphite oxide. Mater. Res. Bull. 55, 48–52 (2014)CrossRef
53.
Zurück zum Zitat Gao, X., Jang, J., Nagase, S.: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef Gao, X., Jang, J., Nagase, S.: Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRef
54.
Zurück zum Zitat Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef Pei, S., Zhao, J., Du, J., Ren, W., Cheng, H.M.: Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRef
55.
Zurück zum Zitat Wei, Z., Chen, Y., Wang, J., Su, D., Tang, M., Mao, S., Wang, Y.: Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 6(9), 5816–5822 (2016)CrossRef Wei, Z., Chen, Y., Wang, J., Su, D., Tang, M., Mao, S., Wang, Y.: Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 6(9), 5816–5822 (2016)CrossRef
56.
Zurück zum Zitat Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)CrossRef Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)CrossRef
57.
Zurück zum Zitat Zhang, Y., Li, D., Zhang, Y., Zhou, X., Guo, S., Yang, L.: Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2(22), 8273–8280 (2014)CrossRef Zhang, Y., Li, D., Zhang, Y., Zhou, X., Guo, S., Yang, L.: Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J. Mater. Chem. A 2(22), 8273–8280 (2014)CrossRef
58.
Zurück zum Zitat Myung, S., Solanki, A., Kim, C., Park, J., Kim, K.S., Lee, K.B.: Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23(19), 2221–2225 (2011)CrossRef Myung, S., Solanki, A., Kim, C., Park, J., Kim, K.S., Lee, K.B.: Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 23(19), 2221–2225 (2011)CrossRef
59.
Zurück zum Zitat Wu, Z.S., Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)CrossRef Wu, Z.S., Wang, D.W., Ren, W., Zhao, J., Zhou, G., Li, F., Cheng, H.M.: Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 20(20), 3595–3602 (2010)CrossRef
60.
Zurück zum Zitat Lv, W., Sun, F., Tang, D.M., Fang, H.T., Liu, C., Yang, Q.H., Cheng, H.M.: A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 21(25), 9014–9019 (2011)CrossRef Lv, W., Sun, F., Tang, D.M., Fang, H.T., Liu, C., Yang, Q.H., Cheng, H.M.: A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance. J. Mater. Chem. 21(25), 9014–9019 (2011)CrossRef
61.
Zurück zum Zitat Dutta, A., Ouyang, J.: Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 5(2), 1371–1380 (2015)CrossRef Dutta, A., Ouyang, J.: Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 5(2), 1371–1380 (2015)CrossRef
62.
Zurück zum Zitat Li, J., Tang, W., Liu, G., Li, W., Deng, Y., Yang, J., Chen, Y.: Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catal. Today 278, 203–208 (2016)CrossRef Li, J., Tang, W., Liu, G., Li, W., Deng, Y., Yang, J., Chen, Y.: Reduced graphene oxide modified platinum catalysts for the oxidation of volatile organic compounds. Catal. Today 278, 203–208 (2016)CrossRef
63.
Zurück zum Zitat Zhou, Y., Hu, X.C., Fan, Q., Wen, H.R.: Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4(12), 4587–4591 (2016)CrossRef Zhou, Y., Hu, X.C., Fan, Q., Wen, H.R.: Three-dimensional crumpled graphene as an electro-catalyst support for formic acid electro-oxidation. J. Mater. Chem. A 4(12), 4587–4591 (2016)CrossRef
64.
Zurück zum Zitat Eigler, S., Hirsch, A.: Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef Eigler, S., Hirsch, A.: Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)CrossRef
65.
Zurück zum Zitat Fan, X., Zhang, G., Zhang, F.: Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44(10), 3023–3035 (2015)CrossRef Fan, X., Zhang, G., Zhang, F.: Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44(10), 3023–3035 (2015)CrossRef
66.
Zurück zum Zitat Julkapli, N.M., Bagheri, S.: Graphene-supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy 40(2), 948–979 (2015)CrossRef Julkapli, N.M., Bagheri, S.: Graphene-supported heterogeneous catalysts: an overview. Int. J. Hydrogen Energy 40(2), 948–979 (2015)CrossRef
67.
Zurück zum Zitat Wang, J., Kondrat, S.A., Wang, Y., Brett, G.L., Giles, C., Bartley, J.K., Hutchings, G.J.: Au–Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal. 5(6), 3575–3587 (2015)CrossRef Wang, J., Kondrat, S.A., Wang, Y., Brett, G.L., Giles, C., Bartley, J.K., Hutchings, G.J.: Au–Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal. 5(6), 3575–3587 (2015)CrossRef
68.
Zurück zum Zitat Sun, Y., Du, C., An, M., Du, L., Tan, Q., Liu, C., Yin, G.: Boron-doped graphene as promising support for a platinum catalyst with superior activity towards the methanol electrooxidation reaction. J. Power Sources 300, 245–253 (2015)CrossRef Sun, Y., Du, C., An, M., Du, L., Tan, Q., Liu, C., Yin, G.: Boron-doped graphene as promising support for a platinum catalyst with superior activity towards the methanol electrooxidation reaction. J. Power Sources 300, 245–253 (2015)CrossRef
69.
Zurück zum Zitat Wang, C., Astruc, D.: Recent developments of metallic nanoparticle-graphene nanocatalysts. Prog. Mater. Sci. (2018) Wang, C., Astruc, D.: Recent developments of metallic nanoparticle-graphene nanocatalysts. Prog. Mater. Sci. (2018)
70.
Zurück zum Zitat Li, D., Xu, H., Zhang, L., Leung, D.Y., Vilela, F., Wang, H., Xuan, J.: Boosting the performance of formic acid microfluidic fuel cell: oxygen annealing enhanced Pd@ graphene electrocatalyst. Int. J. Hydrogen Energy 41(24), 10249–10254 (2016)CrossRef Li, D., Xu, H., Zhang, L., Leung, D.Y., Vilela, F., Wang, H., Xuan, J.: Boosting the performance of formic acid microfluidic fuel cell: oxygen annealing enhanced Pd@ graphene electrocatalyst. Int. J. Hydrogen Energy 41(24), 10249–10254 (2016)CrossRef
71.
Zurück zum Zitat Zhang, L.Y., Zhao, Z.L., Yuan, W., Li, C.M.: Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8(4), 1905–1909 (2016)CrossRef Zhang, L.Y., Zhao, Z.L., Yuan, W., Li, C.M.: Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 8(4), 1905–1909 (2016)CrossRef
72.
Zurück zum Zitat Zhang, X., Zhu, J., Tiwary, C.S., Ma, Z., Huang, H., Zhang, J., Wu, Y.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8(17), 10858–10865 (2016)CrossRef Zhang, X., Zhu, J., Tiwary, C.S., Ma, Z., Huang, H., Zhang, J., Wu, Y.: Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 8(17), 10858–10865 (2016)CrossRef
73.
Zurück zum Zitat Zhang, L.Y., Zhao, Z.L., Li, C.M.: Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electrocatalytic activity and stability toward formic acid oxidation. Nano Energy 11, 71–77 (2015)CrossRef Zhang, L.Y., Zhao, Z.L., Li, C.M.: Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electrocatalytic activity and stability toward formic acid oxidation. Nano Energy 11, 71–77 (2015)CrossRef
74.
Zurück zum Zitat Kim, J., Park, J.E., Momma, T., Osaka, T.: Synthesis of Pd–Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction. Electrochim. Acta 54(12), 3412–3418 (2009)CrossRef Kim, J., Park, J.E., Momma, T., Osaka, T.: Synthesis of Pd–Sn nanoparticles by ultrasonic irradiation and their electrocatalytic activity for oxygen reduction. Electrochim. Acta 54(12), 3412–3418 (2009)CrossRef
75.
Zurück zum Zitat Karuppasamy, L., Chen, C.Y., Anandan, S., Wu, J.J.: Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catal. Today 307, 308–317 (2018)CrossRef Karuppasamy, L., Chen, C.Y., Anandan, S., Wu, J.J.: Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium. Catal. Today 307, 308–317 (2018)CrossRef
76.
Zurück zum Zitat Zhang, B., Zhang, C., He, H., Yu, Y., Wang, L., Zhang, J.: Electrochemical synthesis of catalytically active Ru/RuO2 core–shell nanoparticles without stabilizer. Chem. Mater. 22(13), 4056–4061 (2010)CrossRef Zhang, B., Zhang, C., He, H., Yu, Y., Wang, L., Zhang, J.: Electrochemical synthesis of catalytically active Ru/RuO2 core–shell nanoparticles without stabilizer. Chem. Mater. 22(13), 4056–4061 (2010)CrossRef
77.
Zurück zum Zitat Rao, C.R., Trivedi, D.C.: Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev. 249(5–6), 613–631 (2005)CrossRef Rao, C.R., Trivedi, D.C.: Chemical and electrochemical depositions of platinum group metals and their applications. Coord. Chem. Rev. 249(5–6), 613–631 (2005)CrossRef
78.
Zurück zum Zitat Shahrokhian, S., Rezaee, S.: Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 259, 36–47 (2018)CrossRef Shahrokhian, S., Rezaee, S.: Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 259, 36–47 (2018)CrossRef
79.
Zurück zum Zitat Liu, J., Ma, Q., Huang, Z., Liu, G., Zhang, H.: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 1800696 (2018) Liu, J., Ma, Q., Huang, Z., Liu, G., Zhang, H.: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 1800696 (2018)
80.
Zurück zum Zitat Liu, M., Zhang, R., Chen, W.: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014)CrossRef Liu, M., Zhang, R., Chen, W.: Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014)CrossRef
81.
Zurück zum Zitat Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S.: Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014)CrossRef Li, Q., Mahmood, N., Zhu, J., Hou, Y., Sun, S.: Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 9(5), 668–683 (2014)CrossRef
82.
Zurück zum Zitat Xia, B., Yan, Y., Wang, X., Lou, X.W.D.: Recent progress on graphene-based hybrid electrocatalysts. Mater. Horizons 1(4), 379–399 (2014)CrossRef Xia, B., Yan, Y., Wang, X., Lou, X.W.D.: Recent progress on graphene-based hybrid electrocatalysts. Mater. Horizons 1(4), 379–399 (2014)CrossRef
83.
Zurück zum Zitat Ambrosi, A., Chua, C.K., Latiff, N.M., Loo, A.H., Wong, C.H.A., Eng, A.Y.S., Pumera, M.: Graphene and its electrochemistry—an update. Chem. Soc. Rev. 45(9), 2458–2493 (2016)CrossRef Ambrosi, A., Chua, C.K., Latiff, N.M., Loo, A.H., Wong, C.H.A., Eng, A.Y.S., Pumera, M.: Graphene and its electrochemistry—an update. Chem. Soc. Rev. 45(9), 2458–2493 (2016)CrossRef
84.
Zurück zum Zitat Su, D.S., Perathoner, S., Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013)CrossRef Su, D.S., Perathoner, S., Centi, G.: Nanocarbons for the development of advanced catalysts. Chem. Rev. 113(8), 5782–5816 (2013)CrossRef
85.
Zurück zum Zitat Kumar, A., Xu, Q.: Two-dimensional layered materials as catalyst supports. ChemNanoMat 4(1), 28–40 (2018)CrossRef Kumar, A., Xu, Q.: Two-dimensional layered materials as catalyst supports. ChemNanoMat 4(1), 28–40 (2018)CrossRef
86.
Zurück zum Zitat Sun, S.H., Yang, D.Q., Villers, D., Zhang, G.X., Sacher, E., Dodelet, J.P.: Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20(3), 571–574 (2008)CrossRef Sun, S.H., Yang, D.Q., Villers, D., Zhang, G.X., Sacher, E., Dodelet, J.P.: Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20(3), 571–574 (2008)CrossRef
87.
Zurück zum Zitat Wang, M., Wang, X., Li, J., Liu, L.: In situ synthesis of 3D platinum nanoflowers on porous silicon for monolithic integrated micro direct methanol fuel cells. J. Mater. Chem. A 1(28), 8127–8133 (2013)CrossRef Wang, M., Wang, X., Li, J., Liu, L.: In situ synthesis of 3D platinum nanoflowers on porous silicon for monolithic integrated micro direct methanol fuel cells. J. Mater. Chem. A 1(28), 8127–8133 (2013)CrossRef
88.
Zurück zum Zitat Yin, A.X., Min, X.Q., Zhang, Y.W., Yan, C.H.: Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt–Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011)CrossRef Yin, A.X., Min, X.Q., Zhang, Y.W., Yan, C.H.: Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt–Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133(11), 3816–3819 (2011)CrossRef
89.
Zurück zum Zitat Lu, Y., Jiang, Y., Wu, H., Chen, W.: Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef Lu, Y., Jiang, Y., Wu, H., Chen, W.: Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping–cleaning. J. Phys. Chem. C 117(6), 2926–2938 (2013)CrossRef
90.
Zurück zum Zitat Li, S.S., Zheng, J.N., Ma, X., Hu, Y.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 6(11), 5708–5713 (2014)CrossRef Li, S.S., Zheng, J.N., Ma, X., Hu, Y.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide with enhanced electrocatalytic properties. Nanoscale 6(11), 5708–5713 (2014)CrossRef
91.
Zurück zum Zitat Du, S., Lu, Y., Steinberger-Wilckens, R.: PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 79, 346–353 (2014)CrossRef Du, S., Lu, Y., Steinberger-Wilckens, R.: PtPd nanowire arrays supported on reduced graphene oxide as advanced electrocatalysts for methanol oxidation. Carbon 79, 346–353 (2014)CrossRef
92.
Zurück zum Zitat Chen, Z., Waje, M., Li, W., Yan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. 119(22), 4138–4141 (2007)CrossRef Chen, Z., Waje, M., Li, W., Yan, Y.: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. 119(22), 4138–4141 (2007)CrossRef
93.
Zurück zum Zitat Lu, Y., Jiang, Y., Chen, W.: PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2(5), 836–844 (2013)CrossRef Lu, Y., Jiang, Y., Chen, W.: PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2(5), 836–844 (2013)CrossRef
94.
Zurück zum Zitat Lv, J.J., Wisitruangsakul, N., Feng, J.J., Luo, J., Fang, K.M., Wang, A.J.: Biomolecule-assisted synthesis of porous PtPd alloyed nanoflowers supported on reduced graphene oxide with highly electrocatalytic performance for ethanol oxidation and oxygen reduction. Electrochim. Acta 160, 100–107 (2015)CrossRef Lv, J.J., Wisitruangsakul, N., Feng, J.J., Luo, J., Fang, K.M., Wang, A.J.: Biomolecule-assisted synthesis of porous PtPd alloyed nanoflowers supported on reduced graphene oxide with highly electrocatalytic performance for ethanol oxidation and oxygen reduction. Electrochim. Acta 160, 100–107 (2015)CrossRef
95.
Zurück zum Zitat Xu, C., Tian, Z., Shen, P., Jiang, S.P.: Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim. Acta 53(5), 2610–2618 (2008)CrossRef Xu, C., Tian, Z., Shen, P., Jiang, S.P.: Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim. Acta 53(5), 2610–2618 (2008)CrossRef
96.
Zurück zum Zitat Rostami, H., Rostami, A.A., Omrani, A.: An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim. Acta 194, 431–440 (2016)CrossRef Rostami, H., Rostami, A.A., Omrani, A.: An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells. Electrochim. Acta 194, 431–440 (2016)CrossRef
97.
Zurück zum Zitat Liu, P., Cheng, Z., Ma, L., Zhang, M., Qiu, Y., Chen, M., Cheng, F.: Cuprous oxide template synthesis of hollow-cubic Cu2O@PdxRuy nanoparticles for ethanol electrooxidation in alkaline media. RSC Adv. 6(80), 76684–76690 (2016)CrossRef Liu, P., Cheng, Z., Ma, L., Zhang, M., Qiu, Y., Chen, M., Cheng, F.: Cuprous oxide template synthesis of hollow-cubic Cu2O@PdxRuy nanoparticles for ethanol electrooxidation in alkaline media. RSC Adv. 6(80), 76684–76690 (2016)CrossRef
98.
Zurück zum Zitat Zhang, N., Fan, Y., Fan, H., Shao, H., Wang, J., Zhang, J., Cao, C.: Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution. ECS Electrochem. Lett. 1(2), H8–H10 (2012)CrossRef Zhang, N., Fan, Y., Fan, H., Shao, H., Wang, J., Zhang, J., Cao, C.: Cross-linked Co3O4 nanowalls synthesized by electrochemical oxidation of metallic cobalt layer for oxygen evolution. ECS Electrochem. Lett. 1(2), H8–H10 (2012)CrossRef
99.
Zurück zum Zitat Ye, L., Li, Z., Zhang, X., Lei, F., Lin, S.: One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2(48), 21010–21019 (2014)CrossRef Ye, L., Li, Z., Zhang, X., Lei, F., Lin, S.: One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2(48), 21010–21019 (2014)CrossRef
100.
Zurück zum Zitat Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z.: MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int. J. Hydrogen Energy 35(19), 10522–10526 (2010)CrossRef Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z.: MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int. J. Hydrogen Energy 35(19), 10522–10526 (2010)CrossRef
101.
Zurück zum Zitat Zheng, J.N., Li, S.S., Ma, X., Chen, F.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Green synthesis of core–shell gold–palladium@ palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources 262, 270–278 (2014)CrossRef Zheng, J.N., Li, S.S., Ma, X., Chen, F.Y., Wang, A.J., Chen, J.R., Feng, J.J.: Green synthesis of core–shell gold–palladium@ palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media. J. Power Sources 262, 270–278 (2014)CrossRef
102.
Zurück zum Zitat Wang, S., Iyyamperumal, E., Roy, A., Xue, Y., Yu, D., Dai, L.: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen. Angew. Chem. 123(49), 11960–11964 (2011)CrossRef Wang, S., Iyyamperumal, E., Roy, A., Xue, Y., Yu, D., Dai, L.: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by Co-doping with boron and nitrogen. Angew. Chem. 123(49), 11960–11964 (2011)CrossRef
103.
Zurück zum Zitat Lv, J.J., Li, S.S., Zheng, J.N., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity. Int. J. Hydrogen Energy 39(7), 3211–3218 (2014)CrossRef Lv, J.J., Li, S.S., Zheng, J.N., Wang, A.J., Chen, J.R., Feng, J.J.: Facile synthesis of reduced graphene oxide supported PtAg nanoflowers and their enhanced electrocatalytic activity. Int. J. Hydrogen Energy 39(7), 3211–3218 (2014)CrossRef
104.
Zurück zum Zitat Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y.: Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22(35), 18327–18334 (2012)CrossRef Ye, W., Chen, Y., Zhou, F., Wang, C., Li, Y.: Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. J. Mater. Chem. 22(35), 18327–18334 (2012)CrossRef
105.
Zurück zum Zitat Huang, D., Bai, X., Zheng, L.: Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J. Phys. Chem. C 115(30), 14641–14647 (2011)CrossRef Huang, D., Bai, X., Zheng, L.: Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J. Phys. Chem. C 115(30), 14641–14647 (2011)CrossRef
106.
Zurück zum Zitat Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J.: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7), 2513–2523 (2012)CrossRef Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J.: One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50(7), 2513–2523 (2012)CrossRef
107.
Zurück zum Zitat Rodriguez, P., Kwon, Y., Koper, M.T.: The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4(3), 177 (2012)CrossRef Rodriguez, P., Kwon, Y., Koper, M.T.: The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4(3), 177 (2012)CrossRef
108.
Zurück zum Zitat Tateishi, N., Nishimura, K., Yahikozawa, K., Nakagawa, M., Yamada, M., Takasu, Y.: Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem. 352(1–2), 243–252 (1993)CrossRef Tateishi, N., Nishimura, K., Yahikozawa, K., Nakagawa, M., Yamada, M., Takasu, Y.: Electrocatalytic properties of ultrafine gold particles towards oxidation of acetaldehyde and ethanol. J. Electroanal. Chem. 352(1–2), 243–252 (1993)CrossRef
109.
Zurück zum Zitat Xu, C., Cheng, L., Shen, P., Liu, Y.: Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 9(5), 997–1001 (2007)CrossRef Xu, C., Cheng, L., Shen, P., Liu, Y.: Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 9(5), 997–1001 (2007)CrossRef
110.
Zurück zum Zitat Choi, C.H., Kim, M., Kwon, H.C., Cho, S.J., Yun, S., Kim, H.T., Choi, M.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016)CrossRef Choi, C.H., Kim, M., Kwon, H.C., Cho, S.J., Yun, S., Kim, H.T., Choi, M.: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016)CrossRef
111.
Zurück zum Zitat Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., Dai, H.: Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5(7), 7931–7935 (2012)CrossRef Wang, H., Yang, Y., Liang, Y., Zheng, G., Li, Y., Cui, Y., Dai, H.: Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 5(7), 7931–7935 (2012)CrossRef
112.
Zurück zum Zitat Xuan, L., Chen, L., Yang, Q., Chen, W., Hou, X., Jiang, Y., et al.: Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudo capacitor materials. J. Mater. Chem. A. 3, 17525–17533 (2015)CrossRef Xuan, L., Chen, L., Yang, Q., Chen, W., Hou, X., Jiang, Y., et al.: Engineering 2D multi-layer graphene-like Co3O4 thin sheets with vertically aligned nanosheets as basic building units for advanced pseudo capacitor materials. J. Mater. Chem. A. 3, 17525–17533 (2015)CrossRef
113.
Zurück zum Zitat Moosavifard, S.E., Shamsi, J., Fani, S., Kadkhodazade, S.: 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials. RSC Adv. 4, 52555–52561 (2014)CrossRef Moosavifard, S.E., Shamsi, J., Fani, S., Kadkhodazade, S.: 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials. RSC Adv. 4, 52555–52561 (2014)CrossRef
114.
Zurück zum Zitat Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y.: Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014)CrossRef Lu, X., Yu, M., Wang, G., Tong, Y., Li, Y.: Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ. Sci. 7, 2160–2181 (2014)CrossRef
115.
Zurück zum Zitat Chen, T., Dai, L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRef Chen, T., Dai, L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272–280 (2013)CrossRef
116.
Zurück zum Zitat Guo, D., Luo, Y., Yu, X., Li, Q., Wang, T.: High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)CrossRef Guo, D., Luo, Y., Yu, X., Li, Q., Wang, T.: High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014)CrossRef
117.
Zurück zum Zitat Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)CrossRef Hall, P.J., Mirzaeian, M., Fletcher, S.I., Sillars, F.B., Rennie, A.J., Shitta-Bey, G.O., Wilson, G., Cruden, A., Carter, R.: Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ. Sci. 3, 1238–1251 (2010)CrossRef
118.
Zurück zum Zitat Miller, J.R., Burke, A.F.: Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 4(Spring), 53–57 (2008) Miller, J.R., Burke, A.F.: Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 4(Spring), 53–57 (2008)
119.
Zurück zum Zitat Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)CrossRef Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 2nd edn. Kluwer Academic/Plenum Publishers, New York (1999)CrossRef
120.
Zurück zum Zitat Trasatti, S., Kurzweil, P.: Electrochemical supercapacitors as versatile energy stores. Platinum Met. Rev. 38, 46–56 (1994) Trasatti, S., Kurzweil, P.: Electrochemical supercapacitors as versatile energy stores. Platinum Met. Rev. 38, 46–56 (1994)
121.
Zurück zum Zitat Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J.: A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRef
122.
Zurück zum Zitat Carter, R., Cruden, A.: Strategies for control of a battery/supercapacitor system in an electric vehicle. In: 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, vol. 1–3, pp. 727–732. IEEE (2008) Carter, R., Cruden, A.: Strategies for control of a battery/supercapacitor system in an electric vehicle. In: 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, vol. 1–3, pp. 727–732. IEEE (2008)
123.
Zurück zum Zitat Gao, Q., Demarconnay, L., Raymundo-Pinero, E., Beguin, F.: Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012)CrossRef Gao, Q., Demarconnay, L., Raymundo-Pinero, E., Beguin, F.: Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5, 9611–9617 (2012)CrossRef
124.
Zurück zum Zitat Fic, K., Lota, G., Meller, M., Frackowiak, E.: Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)CrossRef Fic, K., Lota, G., Meller, M., Frackowiak, E.: Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)CrossRef
125.
Zurück zum Zitat Zhang, Q., Rong, J., Ma, D., Wei, B.: The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ. Sci. 4, 2152–2159 (2011)CrossRef Zhang, Q., Rong, J., Ma, D., Wei, B.: The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes. Energy Environ. Sci. 4, 2152–2159 (2011)CrossRef
126.
Zurück zum Zitat Wan, L., Sun, S., Zhai, T., Savilov, S.V., Lunin, V.V., Xia, H.: Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. J. Mater. Res. 1–12 (2017) Wan, L., Sun, S., Zhai, T., Savilov, S.V., Lunin, V.V., Xia, H.: Multiscale porous graphene oxide network with high packing density for asymmetric supercapacitors. J. Mater. Res. 1–12 (2017)
127.
Zurück zum Zitat Yang, J., Hu, J., Zhu, M., Zhao, Y., Chen, H., Pan, F.: Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. J. Power Sources 365, 362–371 (2017)CrossRef Yang, J., Hu, J., Zhu, M., Zhao, Y., Chen, H., Pan, F.: Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors. J. Power Sources 365, 362–371 (2017)CrossRef
128.
Zurück zum Zitat Jana, A., Scheer, E., Polarz, S.: Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017)CrossRef Jana, A., Scheer, E., Polarz, S.: Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J. Nanotechnol. 8, 688–714 (2017)CrossRef
129.
Zurück zum Zitat Fan, H., Niu, R., Duan, J., Liu, W., Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475–19483 (2016)CrossRef Fan, H., Niu, R., Duan, J., Liu, W., Shen, W.: Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475–19483 (2016)CrossRef
130.
Zurück zum Zitat Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., Cheng, H.-M.: Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., Cheng, H.-M.: Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012)CrossRef
131.
Zurück zum Zitat Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef Frackowiak, E.: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007)CrossRef
132.
Zurück zum Zitat Hu, C.-C., Chang, K.-H., Lin, M.-C., Wu, Y.-T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRef Hu, C.-C., Chang, K.-H., Lin, M.-C., Wu, Y.-T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)CrossRef
133.
Zurück zum Zitat Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.-C.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon N. Y. 49, 2917–2925 (2011)CrossRef Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.-C.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon N. Y. 49, 2917–2925 (2011)CrossRef
134.
Zurück zum Zitat Deng, W., Ji, X., Chen, Q., Banks, C.E.: Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv. 1, 1171–1178 (2011)CrossRef Deng, W., Ji, X., Chen, Q., Banks, C.E.: Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv. 1, 1171–1178 (2011)CrossRef
135.
Zurück zum Zitat Shanshan, L., Yansu, W., Zhiling, M.: Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int. J. Electrochem. Sci. 13, 12256–12265 (2018) Shanshan, L., Yansu, W., Zhiling, M.: Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode. Int. J. Electrochem. Sci. 13, 12256–12265 (2018)
136.
Zurück zum Zitat Jinfeng, S., Zhangpeng, L., Jinqing, W., Wei, H., Peiwei, G., Ping, W., Zhaofeng, W., Shengrong, Y.: Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J. Alloy. Compd. 643, 231–238 (2015)CrossRef Jinfeng, S., Zhangpeng, L., Jinqing, W., Wei, H., Peiwei, G., Ping, W., Zhaofeng, W., Shengrong, Y.: Ni/Bi battery based on Ni(OH)2 nanoparticles/graphene sheets and Bi2O3 rods/graphene sheets with high performance. J. Alloy. Compd. 643, 231–238 (2015)CrossRef
137.
Zurück zum Zitat Huan-Wen, W., Zhong-Ai, H., Yan-Qin, C., Yan-Li, C., Zi-Qiang, L., Zi-Yu, Z., Yu-Ying, Y.: Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)CrossRef Huan-Wen, W., Zhong-Ai, H., Yan-Qin, C., Yan-Li, C., Zi-Qiang, L., Zi-Yu, Z., Yu-Ying, Y.: Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics. Electrochim. Acta 55, 8974–8980 (2010)CrossRef
138.
Zurück zum Zitat Ezhil, V.A.T., Bose, D., Muruganantham, R., Seung-Kyu, H., Chang-Soo, J., Yun Suk, H., Young-Kyu, H.: Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 6, 14367 (2018) Ezhil, V.A.T., Bose, D., Muruganantham, R., Seung-Kyu, H., Chang-Soo, J., Yun Suk, H., Young-Kyu, H.: Hexagonal Co3O4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing. J. Mater. Chem. A 6, 14367 (2018)
139.
Zurück zum Zitat Rajesh, K., Hyun-Jun, K., Park, S., Anchal, S., Il-Kwon, O.: Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014)CrossRef Rajesh, K., Hyun-Jun, K., Park, S., Anchal, S., Il-Kwon, O.: Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014)CrossRef
140.
Zurück zum Zitat Arshid, N., Navaneethan, D., Fatin, S., Mahipal, Y.K., Ramesh, K., Ramesh, S.: Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6, 34894 (2016)CrossRef Arshid, N., Navaneethan, D., Fatin, S., Mahipal, Y.K., Ramesh, K., Ramesh, S.: Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6, 34894 (2016)CrossRef
141.
Zurück zum Zitat Chengen, H., Yachao, L., Pengyuan, G., Long, C., Dean, S., Xiaolin, X., Robert, K., Yiu, L., Yingkui, Y.: Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. B 121, 68–74 (2017)CrossRef Chengen, H., Yachao, L., Pengyuan, G., Long, C., Dean, S., Xiaolin, X., Robert, K., Yiu, L., Yingkui, Y.: Bioinspired Co3O4/graphene layered composite films as self-supported electrodes for supercapacitors. Compos. B 121, 68–74 (2017)CrossRef
142.
Zurück zum Zitat Jintao, Z., Jianwen, J., Zhao, X.S.: Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef Jintao, Z., Jianwen, J., Zhao, X.S.: Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef
143.
Zurück zum Zitat Jiayi, Z., Junhui, Y.: Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)CrossRef Jiayi, Z., Junhui, Y.: Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4, 1770–1776 (2012)CrossRef
144.
Zurück zum Zitat Jian, C., Meihua, J., Fei, Y., Tae Hyung, K., Viet Thong, L., Hongyan, Y., Fethullah, G., Bing, L., Arunabha, G., Sishen, X., Young Hee, L.: Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRef Jian, C., Meihua, J., Fei, Y., Tae Hyung, K., Viet Thong, L., Hongyan, Y., Fethullah, G., Bing, L., Arunabha, G., Sishen, X., Young Hee, L.: Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv. Funct. Mater. 23, 5074–5083 (2013)CrossRef
145.
Zurück zum Zitat Sheng, C., Junwu, Z., Xiaodong, W., Qiaofeng, H., Xin, W.: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)CrossRef Sheng, C., Junwu, Z., Xiaodong, W., Qiaofeng, H., Xin, W.: Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)CrossRef
146.
Zurück zum Zitat Xiehong, C., Bing, Z., Wenhui, S., Jian, Y., Zhanxi, F., Zhimin, L., Xianhong, R., Chen, B., Qingyu, Y., Hua, Z.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)CrossRef Xiehong, C., Bing, Z., Wenhui, S., Jian, Y., Zhanxi, F., Zhimin, L., Xianhong, R., Chen, B., Qingyu, Y., Hua, Z.: Reduced graphene oxide-wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)CrossRef
147.
Zurück zum Zitat Alok, P., Abhijeet Sadashiv, G., Satyajit, R., Brahmananda, C., Chandra Sekhar, R.: Enhanced pseudocapacitance of MoO3-reduced graphene oxide hybrids with insight from density functional theory investigations. J. Phys. Chem. C 12, 18992–19001 (2017) Alok, P., Abhijeet Sadashiv, G., Satyajit, R., Brahmananda, C., Chandra Sekhar, R.: Enhanced pseudocapacitance of MoO3-reduced graphene oxide hybrids with insight from density functional theory investigations. J. Phys. Chem. C 12, 18992–19001 (2017)
148.
Zurück zum Zitat Wujun, M., Shaohua, C., Shengyuan, Y., Wenping, C., Wei, W., Yanhua, C., Meifang, Z.: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017)CrossRef Wujun, M., Shaohua, C., Shengyuan, Y., Wenping, C., Wei, W., Yanhua, C., Meifang, Z.: Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113, 151–158 (2017)CrossRef
149.
Zurück zum Zitat Kai, Z., Weijia, Z., Xiaojun, L., Yuanhua, S., Shaozheng, J., Wei, L., Jia, L., Ligui, L., Wenhan, N., Hong, L., Shaowei, C.: Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015)CrossRef Kai, Z., Weijia, Z., Xiaojun, L., Yuanhua, S., Shaozheng, J., Wei, L., Jia, L., Ligui, L., Wenhan, N., Hong, L., Shaowei, C.: Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 12, 510–520 (2015)CrossRef
Metadaten
Titel
Synthesis of Metal/Metal Oxide Supported Reduced Graphene Oxide (RGO) for the Applications of Electrocatalysis and Supercapacitors
verfasst von
Lakshmanan Karuppasamy
Lakshmanan Gurusamy
Gang-Juan Lee
Jerry J. Wu
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9057-0_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.