Skip to main content

2018 | OriginalPaper | Buchkapitel

3. Synthesis of Micro-nanoparticles Using Ultrasound-Responsive Biomolecules

verfasst von : Kenji Okitsu, Francesca Cavalieri

Erschienen in: Sonochemical Production of Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ultrasonic crosslinking of biomacromolecules and biomolecules can be exploited to fabricate micro-nanodevices. In particular, biologically relevant molecules and macromolecules are desirable building blocks for engineering biomaterials. Ultrasonic synthesis, modification, and assembly of biomolecules and biomacromolecules enable the tuning of size, composition, degradability, surface properties, and biofunctionality of micro-nanodevices. Recent achievements in engineering of micro-nanodevices using ultrasound-responsive biomolecules such as proteins, amino acids, and phenolic molecules will be discussed in this section. These recent findings highlight the potential use of high- and low-frequency ultrasound techniques to fabricate innovative platforms for biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.M. Fitch, C. Tsai, Polymer colloids: particle formation in nonmicellar systems. J. Polym. Sci., Part C: Polym. Lett. 8(10), 703–710 (1970) R.M. Fitch, C. Tsai, Polymer colloids: particle formation in nonmicellar systems. J. Polym. Sci., Part C: Polym. Lett. 8(10), 703–710 (1970)
2.
Zurück zum Zitat G. Cooper, F. Grieser, S. Biggs, Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator. J. Colloid Interface Sci. 184(1), 52–63 (1996)CrossRefPubMed G. Cooper, F. Grieser, S. Biggs, Butyl acrylate/vinyl acetate copolymer latex synthesis using ultrasound as an initiator. J. Colloid Interface Sci. 184(1), 52–63 (1996)CrossRefPubMed
3.
Zurück zum Zitat P. Kruus, D. McDonald, T. Patraboy, Polymerization of styrene initiated by ultrasonic cavitation. J. Phys. Chem. 91(11), 3041–3047 (1987)CrossRef P. Kruus, D. McDonald, T. Patraboy, Polymerization of styrene initiated by ultrasonic cavitation. J. Phys. Chem. 91(11), 3041–3047 (1987)CrossRef
4.
Zurück zum Zitat S. Biggs, F. Grieser, Preparation of polystyrene latex with ultrasonic initiation. Macromolecules 28(14), 4877–4882 (1995)CrossRef S. Biggs, F. Grieser, Preparation of polystyrene latex with ultrasonic initiation. Macromolecules 28(14), 4877–4882 (1995)CrossRef
5.
Zurück zum Zitat S.K. Ooi, S. Biggs, Ultrasonic initiation of polystyrene latex synthesis. Ultrason. Sonochem. 7(3), 125–133 (2000)CrossRefPubMed S.K. Ooi, S. Biggs, Ultrasonic initiation of polystyrene latex synthesis. Ultrason. Sonochem. 7(3), 125–133 (2000)CrossRefPubMed
6.
Zurück zum Zitat J. Zhang, Y. Cao, Y. He, Ultrasonically irradiated emulsion polymerization of styrene in the presence of a polymeric surfactant. J. Appl. Polym. Sci. 94(2), 763–768 (2004)CrossRef J. Zhang, Y. Cao, Y. He, Ultrasonically irradiated emulsion polymerization of styrene in the presence of a polymeric surfactant. J. Appl. Polym. Sci. 94(2), 763–768 (2004)CrossRef
7.
Zurück zum Zitat Y. He, Y. Cao, Y. Fan, Using anionic polymerizable surfactants in ultrasonically irradiated emulsion polymerization to prepare polymer nanoparticles. J. Appl. Polym. Sci. 107(3), 2022–2027 (2008)CrossRef Y. He, Y. Cao, Y. Fan, Using anionic polymerizable surfactants in ultrasonically irradiated emulsion polymerization to prepare polymer nanoparticles. J. Appl. Polym. Sci. 107(3), 2022–2027 (2008)CrossRef
8.
Zurück zum Zitat Y. He, Y. Cao, Y. Liu, Initiation mechanism of ultrasonically irradiated emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2617–2624 (2005)CrossRef Y. He, Y. Cao, Y. Liu, Initiation mechanism of ultrasonically irradiated emulsion polymerization. J. Polym. Sci., Part B: Polym. Phys. 43(18), 2617–2624 (2005)CrossRef
9.
Zurück zum Zitat M.A. Bradley et al., Miniemulsion copolymerization of methyl methacrylate and butyl acrylate by ultrasonic initiation. Macromolecules 38(15), 6346–6351 (2005)CrossRef M.A. Bradley et al., Miniemulsion copolymerization of methyl methacrylate and butyl acrylate by ultrasonic initiation. Macromolecules 38(15), 6346–6351 (2005)CrossRef
10.
Zurück zum Zitat H. Xia, Q. Wang, G. Qiu, Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879–3886 (2003)CrossRef H. Xia, Q. Wang, G. Qiu, Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater. 15(20), 3879–3886 (2003)CrossRef
11.
Zurück zum Zitat M. Bradley, F. Grieser, Emulsion polymerization synthesis of cationic polymer latex in an ultrasonic field. J. Colloid Interface Sci. 251(1), 78–84 (2002)CrossRefPubMed M. Bradley, F. Grieser, Emulsion polymerization synthesis of cationic polymer latex in an ultrasonic field. J. Colloid Interface Sci. 251(1), 78–84 (2002)CrossRefPubMed
12.
Zurück zum Zitat F. Cavalieri et al., One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem. Commun. 47(14), 4096–4098 (2011)CrossRef F. Cavalieri et al., One-pot ultrasonic synthesis of multifunctional microbubbles and microcapsules using synthetic thiolated macromolecules. Chem. Commun. 47(14), 4096–4098 (2011)CrossRef
13.
Zurück zum Zitat F. Cavalieri et al., Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24(18), 10078–10083 (2008)CrossRefPubMed F. Cavalieri et al., Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir 24(18), 10078–10083 (2008)CrossRefPubMed
14.
Zurück zum Zitat F. Cavalieri et al., Influence of the Morphology of Lysozyme-Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells. Part. Part. Syst. Charact. 30(8), 695–705 (2013)CrossRef F. Cavalieri et al., Influence of the Morphology of Lysozyme-Shelled Microparticles on the Cellular Association, Uptake, and Degradation in Human Breast Adenocarcinoma Cells. Part. Part. Syst. Charact. 30(8), 695–705 (2013)CrossRef
15.
Zurück zum Zitat M. Zhou, F. Cavalieri, M. Ashokkumar, Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter 7(2), 623–630 (2011)CrossRef M. Zhou, F. Cavalieri, M. Ashokkumar, Tailoring the properties of ultrasonically synthesised microbubbles. Soft Matter 7(2), 623–630 (2011)CrossRef
16.
Zurück zum Zitat T.D. Tran et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2(4), 515 (2007) T.D. Tran et al., Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics. Int. J. Nanomed. 2(4), 515 (2007)
17.
Zurück zum Zitat Y. Mine, F. Ma, S. Lauriau, Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52(5), 1088–1094 (2004)CrossRefPubMed Y. Mine, F. Ma, S. Lauriau, Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52(5), 1088–1094 (2004)CrossRefPubMed
18.
Zurück zum Zitat D. Cosgrove, C. Harvey, Clinical uses of microbubbles in diagnosis and treatment. Med. Biol. Eng. Compu. 47(8), 813–826 (2009)CrossRef D. Cosgrove, C. Harvey, Clinical uses of microbubbles in diagnosis and treatment. Med. Biol. Eng. Compu. 47(8), 813–826 (2009)CrossRef
19.
Zurück zum Zitat K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)CrossRefPubMed K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)CrossRefPubMed
20.
21.
Zurück zum Zitat P. Morse, K. Ingard, Theoretical Acoustics (McGrawHill, New York, 1968), Google Scholar: pp. 252–255 P. Morse, K. Ingard, Theoretical Acoustics (McGrawHill, New York, 1968), Google Scholar: pp. 252–255
22.
Zurück zum Zitat S.H. Bloch et al., Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84(4), 631–633 (2004)CrossRef S.H. Bloch et al., Optical observation of lipid-and polymer-shelled ultrasound microbubble contrast agents. Appl. Phys. Lett. 84(4), 631–633 (2004)CrossRef
23.
Zurück zum Zitat N. de Jong et al., Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30(2), 95–103 (1992)CrossRefPubMed N. de Jong et al., Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30(2), 95–103 (1992)CrossRefPubMed
24.
Zurück zum Zitat N. de Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres. Ultrasonics 31(3), 175–181 (1993)CrossRefPubMed N. de Jong, L. Hoff, Ultrasound scattering properties of Albunex microspheres. Ultrasonics 31(3), 175–181 (1993)CrossRefPubMed
25.
Zurück zum Zitat W.-S. Chen et al., A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113(1), 643–651 (2003)CrossRefPubMed W.-S. Chen et al., A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113(1), 643–651 (2003)CrossRefPubMed
26.
Zurück zum Zitat F. Cavalieri et al., Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl. Mater. Interfaces 5(2), 464–471 (2013)CrossRefPubMed F. Cavalieri et al., Antimicrobial and biosensing ultrasound-responsive lysozyme-shelled microbubbles. ACS Appl. Mater. Interfaces 5(2), 464–471 (2013)CrossRefPubMed
27.
Zurück zum Zitat S. Chapalamadugu, G.R. Chaudhry, Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12(5–6), 357–389 (1992)CrossRefPubMed S. Chapalamadugu, G.R. Chaudhry, Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12(5–6), 357–389 (1992)CrossRefPubMed
28.
Zurück zum Zitat M.S. Ayyagari et al., Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic solvents. Macromolecules 28(15), 5192–5197 (1995)CrossRef M.S. Ayyagari et al., Controlled free-radical polymerization of phenol derivatives by enzyme-catalyzed reactions in organic solvents. Macromolecules 28(15), 5192–5197 (1995)CrossRef
29.
Zurück zum Zitat A. Nozoe et al., Germanium recovery using polyphenol microspheres prepared by horseradish peroxidase reaction. J. Chem. Technol. Biotechnol. 86(11), 1374–1378 (2011)CrossRef A. Nozoe et al., Germanium recovery using polyphenol microspheres prepared by horseradish peroxidase reaction. J. Chem. Technol. Biotechnol. 86(11), 1374–1378 (2011)CrossRef
30.
31.
Zurück zum Zitat S. Dubey, D. Singh, R. Misra, Enzymatic synthesis and various properties of poly (catechol). Enzyme Microb. Technol. 23(7), 432–437 (1998)CrossRef S. Dubey, D. Singh, R. Misra, Enzymatic synthesis and various properties of poly (catechol). Enzyme Microb. Technol. 23(7), 432–437 (1998)CrossRef
32.
Zurück zum Zitat F.F. Bruno et al., Novel enzymatic polyethylene oxide-polyphenol system for ionic conductivity. J. Macromol. Sci. Part A 39(10), 1061–1068 (2002)CrossRef F.F. Bruno et al., Novel enzymatic polyethylene oxide-polyphenol system for ionic conductivity. J. Macromol. Sci. Part A 39(10), 1061–1068 (2002)CrossRef
33.
Zurück zum Zitat Y.-J. Kim, H. Uyama, S. Kobayashi, Regioselective synthesis of poly (phenylene) as a complex with poly (ethylene glycol) by template polymerization of phenol in water. Macromolecules 36(14), 5058–5060 (2003)CrossRef Y.-J. Kim, H. Uyama, S. Kobayashi, Regioselective synthesis of poly (phenylene) as a complex with poly (ethylene glycol) by template polymerization of phenol in water. Macromolecules 36(14), 5058–5060 (2003)CrossRef
34.
Zurück zum Zitat Y.J. Kim, H. Uyama, S. Kobayashi, Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol. Biosci. 4(5), 497–502 (2004)CrossRefPubMed Y.J. Kim, H. Uyama, S. Kobayashi, Peroxidase-catalyzed oxidative polymerization of phenol with a nonionic polymer surfactant template in water. Macromol. Biosci. 4(5), 497–502 (2004)CrossRefPubMed
35.
Zurück zum Zitat T. Heck et al., Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 97(2), 461–475 (2013)CrossRefPubMed T. Heck et al., Enzyme-catalyzed protein crosslinking. Appl. Microbiol. Biotechnol. 97(2), 461–475 (2013)CrossRefPubMed
36.
Zurück zum Zitat Z. Chen et al., Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J. Am. Chem. Soc. 135(11), 4179–4182 (2013)CrossRefPubMed Z. Chen et al., Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. J. Am. Chem. Soc. 135(11), 4179–4182 (2013)CrossRefPubMed
37.
Zurück zum Zitat J. Fei et al., One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@ shell nanostructures and their selective antibacterial applications. ACS Nano 8(8), 8529–8536 (2014)CrossRefPubMed J. Fei et al., One-pot ultrafast self-assembly of autofluorescent polyphenol-based core@ shell nanostructures and their selective antibacterial applications. ACS Nano 8(8), 8529–8536 (2014)CrossRefPubMed
38.
Zurück zum Zitat C. Houée-Lévin et al., Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Res. 49(4), 347–373 (2015)CrossRef C. Houée-Lévin et al., Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Res. 49(4), 347–373 (2015)CrossRef
39.
Zurück zum Zitat T. Michon et al., Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study. Biochemistry 36(28), 8504–8513 (1997)CrossRefPubMed T. Michon et al., Horseradish peroxidase oxidation of tyrosine-containing peptides and their subsequent polymerization: a kinetic study. Biochemistry 36(28), 8504–8513 (1997)CrossRefPubMed
40.
Zurück zum Zitat F. Cavalieri et al., Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Materials Horizons 3, 563–567 (2016)CrossRef F. Cavalieri et al., Sono-assembly of nanostructures via tyrosine–tyrosine coupling reactions at the interface of acoustic cavitation bubbles. Materials Horizons 3, 563–567 (2016)CrossRef
41.
Zurück zum Zitat M. Ashokkumar, T.J. Mason, Sonochemistry. Kirk-Othmer Encycl. Chem. Technol. y On-Line, Wiley Interscience (2007) M. Ashokkumar, T.J. Mason, Sonochemistry. Kirk-Othmer Encycl. Chem. Technol. y On-Line, Wiley Interscience (2007)
42.
Zurück zum Zitat J. Berthelot, Y. Benammar, C. Lange, A mild and efficient sonochemical bromination of alkenes using tetrabutylammonium tribromide. Tetrahedron Lett. 32(33), 4135–4136 (1991)CrossRef J. Berthelot, Y. Benammar, C. Lange, A mild and efficient sonochemical bromination of alkenes using tetrabutylammonium tribromide. Tetrahedron Lett. 32(33), 4135–4136 (1991)CrossRef
43.
Zurück zum Zitat S.K. Bhangu, M. Ashokkumar, Theory of sonochemistry. Top. Curr. Chem. 374(4), 56 (2016)CrossRef S.K. Bhangu, M. Ashokkumar, Theory of sonochemistry. Top. Curr. Chem. 374(4), 56 (2016)CrossRef
44.
Zurück zum Zitat M.H. Entezari, C. Pétrier, A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrason. Sonochem. 12(4), 283–288 (2005)CrossRefPubMed M.H. Entezari, C. Pétrier, A combination of ultrasound and oxidative enzyme: sono-enzyme degradation of phenols in a mixture. Ultrason. Sonochem. 12(4), 283–288 (2005)CrossRefPubMed
45.
Zurück zum Zitat S. Okouchi, O. Nojima, T. Arai, Cavitation-induced degradation of phenol by ultrasound. Water Sci. Technol. 26(9–11), 2053–2056 (1992)CrossRef S. Okouchi, O. Nojima, T. Arai, Cavitation-induced degradation of phenol by ultrasound. Water Sci. Technol. 26(9–11), 2053–2056 (1992)CrossRef
46.
Zurück zum Zitat C. Petrier et al., Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 98(41), 10514–10520 (1994)CrossRef C. Petrier et al., Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J. Phys. Chem. 98(41), 10514–10520 (1994)CrossRef
47.
Zurück zum Zitat N. Serpone et al., Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Res. Chem. Intermed. 18(2), 183–202 (1992)CrossRef N. Serpone et al., Sonochemical oxidation of phenol and three of its intermediate products in aqueous media: catechol, hydroquinone, and benzoquinone. Kinetic and mechanistic aspects. Res. Chem. Intermed. 18(2), 183–202 (1992)CrossRef
48.
Zurück zum Zitat C. Wu et al., Photosonochemical degradation of phenol in water. Water Res. 35(16), 3927–3933 (2001)CrossRefPubMed C. Wu et al., Photosonochemical degradation of phenol in water. Water Res. 35(16), 3927–3933 (2001)CrossRefPubMed
49.
Zurück zum Zitat S.K. Bhangu, M. Ashokkumar, F. Cavalieri, A simple one-step ultrasonic route to synthesize antioxidant molecules and fluorescent nanoparticles from phenol and phenol-like molecules. ACS Sustain. Chem. Eng. 5(7), 6081–6089 (2017)CrossRef S.K. Bhangu, M. Ashokkumar, F. Cavalieri, A simple one-step ultrasonic route to synthesize antioxidant molecules and fluorescent nanoparticles from phenol and phenol-like molecules. ACS Sustain. Chem. Eng. 5(7), 6081–6089 (2017)CrossRef
50.
Zurück zum Zitat F.F. Bruno et al., Polymerization of water-soluble conductive polyphenol using horseradish peroxidase. J. Macromol. Sci. Part A 38(12), 1417–1426 (2001)CrossRef F.F. Bruno et al., Polymerization of water-soluble conductive polyphenol using horseradish peroxidase. J. Macromol. Sci. Part A 38(12), 1417–1426 (2001)CrossRef
52.
Zurück zum Zitat D.A. Malencik et al., Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242(2), 202–213 (1996)CrossRefPubMed D.A. Malencik et al., Dityrosine: preparation, isolation, and analysis. Anal. Biochem. 242(2), 202–213 (1996)CrossRefPubMed
53.
Zurück zum Zitat G.J. Smith, T.G. Haskell, The fluorescent oxidation products of dihydroxyphenylalanine and its esters. J. Photochem. Photobiol., B 55(2), 103–108 (2000)CrossRef G.J. Smith, T.G. Haskell, The fluorescent oxidation products of dihydroxyphenylalanine and its esters. J. Photochem. Photobiol., B 55(2), 103–108 (2000)CrossRef
54.
Zurück zum Zitat J. Chandrapala et al., Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18(5), 951–957 (2011)CrossRefPubMed J. Chandrapala et al., Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18(5), 951–957 (2011)CrossRefPubMed
55.
Zurück zum Zitat A.K. Goard, E.K. Rideal, CCXXI—The surface tensions of aqueous phenol solutions. Part II. Activity and surface tension. J. Chem. Soc. Trans. 127, 1668–1676 (1925)CrossRef A.K. Goard, E.K. Rideal, CCXXI—The surface tensions of aqueous phenol solutions. Part II. Activity and surface tension. J. Chem. Soc. Trans. 127, 1668–1676 (1925)CrossRef
56.
57.
Zurück zum Zitat S.K. Bhangu et al., Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chem. 20, 816–821 (2018)CrossRef S.K. Bhangu et al., Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chem. 20, 816–821 (2018)CrossRef
58.
Zurück zum Zitat I. Mueller-Harvey, Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91(1), 3–20 (2001)CrossRef I. Mueller-Harvey, Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 91(1), 3–20 (2001)CrossRef
59.
Zurück zum Zitat L. Pouységu et al., Synthesis of ellagitannin natural products. Nat. Prod. Rep. 28(5), 853–874 (2011)CrossRefPubMed L. Pouységu et al., Synthesis of ellagitannin natural products. Nat. Prod. Rep. 28(5), 853–874 (2011)CrossRefPubMed
60.
Zurück zum Zitat H. Ejima et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013)CrossRefPubMed H. Ejima et al., One-step assembly of coordination complexes for versatile film and particle engineering. Science 341(6142), 154–157 (2013)CrossRefPubMed
61.
Zurück zum Zitat S. Quideau et al., Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 50(3), 586–621 (2011)CrossRef S. Quideau et al., Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 50(3), 586–621 (2011)CrossRef
62.
Zurück zum Zitat N. Bertleff-Zieschang et al., Biofunctional metal–phenolic films from dietary flavonoids. Chem. Commun. 53(6), 1068–1071 (2017)CrossRef N. Bertleff-Zieschang et al., Biofunctional metal–phenolic films from dietary flavonoids. Chem. Commun. 53(6), 1068–1071 (2017)CrossRef
63.
Zurück zum Zitat A. Brune, B. Schink, Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157(5), 417–424 (1992)CrossRef A. Brune, B. Schink, Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157(5), 417–424 (1992)CrossRef
64.
Zurück zum Zitat L. Mingshu et al., Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 46(1), 68–84 (2006)CrossRef L. Mingshu et al., Biodegradation of gallotannins and ellagitannins. J. Basic Microbiol. 46(1), 68–84 (2006)CrossRef
65.
Zurück zum Zitat Q. Sun, J. Heilmann, B. König, Natural phenolic metabolites with anti-angiogenic properties–a review from the chemical point of view. Beilstein J. Org. Chem. 11, 249 (2015)CrossRefPubMedPubMedCentral Q. Sun, J. Heilmann, B. König, Natural phenolic metabolites with anti-angiogenic properties–a review from the chemical point of view. Beilstein J. Org. Chem. 11, 249 (2015)CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat S. Kaur Bhangu, M. Ashokkumar, J. Lee, Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 16(4), 1934–1941 (2016)CrossRef S. Kaur Bhangu, M. Ashokkumar, J. Lee, Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 16(4), 1934–1941 (2016)CrossRef
67.
Zurück zum Zitat V.S. Nalajala, V.S. Moholkar, Investigations in the physical mechanism of sonocrystallization. Ultrason. Sonochem. 18(1), 345–355 (2011)CrossRefPubMed V.S. Nalajala, V.S. Moholkar, Investigations in the physical mechanism of sonocrystallization. Ultrason. Sonochem. 18(1), 345–355 (2011)CrossRefPubMed
68.
Zurück zum Zitat H.-M. Zhang et al., Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 11(2), 92 (2014)PubMedPubMedCentral H.-M. Zhang et al., Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 11(2), 92 (2014)PubMedPubMedCentral
69.
Zurück zum Zitat N. Wang et al., Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat. 134(3), 943–955 (2012)CrossRefPubMedPubMedCentral N. Wang et al., Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res. Treat. 134(3), 943–955 (2012)CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat L. Tang et al., Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem. Toxicol. 56, 204–213 (2013)CrossRefPubMed L. Tang et al., Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem. Toxicol. 56, 204–213 (2013)CrossRefPubMed
Metadaten
Titel
Synthesis of Micro-nanoparticles Using Ultrasound-Responsive Biomolecules
verfasst von
Kenji Okitsu
Francesca Cavalieri
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96734-9_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.