Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2020

10.02.2020 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Synthesis of (Mn(1−x)Znx)Fe2O4 nanoparticles for magnetocaloric applications

verfasst von: V. A. Balanov, A. P. Kiseleva, E. F. Krivoshapkina, E. А. Kashtanov, R. R. Gimaev, V. I. Zverev, P. V. Krivoshapkin

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, one of the most important global goals in medicine is to find ways to control cancer. Magnetic fluid hyperthermia is a promising method for cancer treatment due to its localized influence and low damage to healthy tissue. Ferrite nanoparticles are widely used in this cancer modality because of their low Curie temperature, biocompatibility, and production simplicity. In this work, (Mn(1−x)Znx)Fe2O4 sol was obtained by hydrothermal synthesis from chlorides of zinc, manganese, and iron (III) at 180 °C for x = 0.1 and x = 0.2. The results of dynamic light scattering analysis have shown that the average hydrodynamic diameter of nanoparticles in the sol is about 70 nm. According to scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), the powdered nanoparticles are spherical with a high degree of crystallinity. X-ray powder diffraction analysis (XRD) has confirmed single-phase formation in samples. The magnetic properties measured have indicated that the nanoparticles have reached temperatures close to the range required for deactivation of cancer cells under the influence of a variable magnetic field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tishin MA, Shtil AA, Pyatakov AP, Zverev VI (2016) Developing antitumor magnetic hyperthermia: principles, materials and devices. Recent Pat Anti-Cancer Drug Discov 11:360–375CrossRef Tishin MA, Shtil AA, Pyatakov AP, Zverev VI (2016) Developing antitumor magnetic hyperthermia: principles, materials and devices. Recent Pat Anti-Cancer Drug Discov 11:360–375CrossRef
2.
Zurück zum Zitat Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167CrossRef Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167CrossRef
3.
Zurück zum Zitat Zverev VI, Pyatakov AP, Shtil AA, Tishin AM (2018) Novel applications of magnetic materials and technologies for medicine. J Magn Magn Mater 459:182–186CrossRef Zverev VI, Pyatakov AP, Shtil AA, Tishin AM (2018) Novel applications of magnetic materials and technologies for medicine. J Magn Magn Mater 459:182–186CrossRef
4.
Zurück zum Zitat Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60CrossRef Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60CrossRef
5.
Zurück zum Zitat Zalich MA (2005) Physical properties of magnetic macromolecule-metal and macromolecule-metal oxide nanoparticle complexes. Virginia Polytechnic Institute and State University Zalich MA (2005) Physical properties of magnetic macromolecule-metal and macromolecule-metal oxide nanoparticle complexes. Virginia Polytechnic Institute and State University
6.
Zurück zum Zitat Drozdov AS, Shapovalova OE, Ivanovski V, Avnir D, Vinogradov VV (2016) Entrapment of enzymes within sol–gel-derived magnetite. Chem Mater 28:2248–2253CrossRef Drozdov AS, Shapovalova OE, Ivanovski V, Avnir D, Vinogradov VV (2016) Entrapment of enzymes within sol–gel-derived magnetite. Chem Mater 28:2248–2253CrossRef
7.
Zurück zum Zitat Drozdov AS, Volodina KV, Vinogradov VV, Vinogradov VV (2015) Biocomposites for wound-healing based on sol–gel magnetite. RSC Adv 5:82992–82997CrossRef Drozdov AS, Volodina KV, Vinogradov VV, Vinogradov VV (2015) Biocomposites for wound-healing based on sol–gel magnetite. RSC Adv 5:82992–82997CrossRef
8.
Zurück zum Zitat Lee KJ, An JH, Shin JS, Kim DH, Yoo HS, Cho CK (2011) Biostability of γ-Fe2O3 nanoparticles Evaluated using an in vitro cytotoxicity assays on various tumor cell lines. Curr Appl Phys 11:467–471CrossRef Lee KJ, An JH, Shin JS, Kim DH, Yoo HS, Cho CK (2011) Biostability of γ-Fe2O3 nanoparticles Evaluated using an in vitro cytotoxicity assays on various tumor cell lines. Curr Appl Phys 11:467–471CrossRef
9.
Zurück zum Zitat Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915CrossRef
10.
Zurück zum Zitat Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767CrossRef Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767CrossRef
11.
Zurück zum Zitat Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23CrossRef Boyer C, Whittaker MR, Bulmus V, Liu J, Davis TP (2010) The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Mater 2:23CrossRef
12.
Zurück zum Zitat Arias JL, Gallardo V, Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly (ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77:309–321CrossRef Arias JL, Gallardo V, Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly (ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77:309–321CrossRef
13.
Zurück zum Zitat Mornet S, Grasset F, Portier J, Duguet E (2002) Maghemite/silica nanoparticles for biological applications. Eur Cells Mater 3:110–113 Mornet S, Grasset F, Portier J, Duguet E (2002) Maghemite/silica nanoparticles for biological applications. Eur Cells Mater 3:110–113
14.
Zurück zum Zitat Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327CrossRef Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327CrossRef
15.
Zurück zum Zitat Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef
16.
Zurück zum Zitat Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23CrossRef
17.
Zurück zum Zitat Dailey JP, Phillips JP, Li C, Riffle JS (1999) Synthesis of silicone magnetic fluid for use in eye surgery. J Magn Magn Mater 194:140–148CrossRef Dailey JP, Phillips JP, Li C, Riffle JS (1999) Synthesis of silicone magnetic fluid for use in eye surgery. J Magn Magn Mater 194:140–148CrossRef
18.
Zurück zum Zitat Rutnakornpituk M, Baranauskas VV, Riffle JS, Connolly J, St Pierre T, Dailey JP (2002) Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur Cells Mater 3:102–105 Rutnakornpituk M, Baranauskas VV, Riffle JS, Connolly J, St Pierre T, Dailey JP (2002) Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur Cells Mater 3:102–105
19.
Zurück zum Zitat Pimentel B, Caraballo-Vivas RJ, Checca NR, Zverev VI, Salakhova RT, Makarova LA, Rossi AL (2018) Threshold heating temperature for magnetic hyperthermia: controlling the heat exchange with the blocking temperature of magnetic nanoparticles. J Solid State Chem 260:34–38CrossRef Pimentel B, Caraballo-Vivas RJ, Checca NR, Zverev VI, Salakhova RT, Makarova LA, Rossi AL (2018) Threshold heating temperature for magnetic hyperthermia: controlling the heat exchange with the blocking temperature of magnetic nanoparticles. J Solid State Chem 260:34–38CrossRef
20.
Zurück zum Zitat Shokrollahi H, Janghorban K (2007) Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater Sci Eng 141:91–107CrossRef Shokrollahi H, Janghorban K (2007) Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater Sci Eng 141:91–107CrossRef
21.
Zurück zum Zitat Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (m = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRef Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (m = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRef
22.
Zurück zum Zitat Ivanets AI, Srivastava V, Roshchina MY, Sillanpää M, Prozorovich VG, Pankov VV (2018) Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram Int 44:9097–9104CrossRef Ivanets AI, Srivastava V, Roshchina MY, Sillanpää M, Prozorovich VG, Pankov VV (2018) Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram Int 44:9097–9104CrossRef
23.
Zurück zum Zitat Kuklo LI, Tolstoy VP (2015) Potassium ferrate aqueous solution as a reagent for the synthesis of nanolayers via the successive ionic layer deposition method. Synthesis of Cu0.9FeOx·nH2O. Russian J Gen Chem 85:2528–2532CrossRef Kuklo LI, Tolstoy VP (2015) Potassium ferrate aqueous solution as a reagent for the synthesis of nanolayers via the successive ionic layer deposition method. Synthesis of Cu0.9FeOx·nH2O. Russian J Gen Chem 85:2528–2532CrossRef
24.
Zurück zum Zitat Kuklo LI, Tolstoy VP (2016) Successive ionic layer deposition of Fe3O4@HxMoO4·nH2O composite nanolayers and their superparamagnetic properties. Nanosyst Phys Chem Math 7:1–5 Kuklo LI, Tolstoy VP (2016) Successive ionic layer deposition of Fe3O4@HxMoO4·nH2O composite nanolayers and their superparamagnetic properties. Nanosyst Phys Chem Math 7:1–5
25.
Zurück zum Zitat He X, Zhong W, Au CT, Du Y (2013) Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res Lett 8:446CrossRef He X, Zhong W, Au CT, Du Y (2013) Size dependence of the magnetic properties of Ni nanoparticles prepared by thermal decomposition method. Nanoscale Res Lett 8:446CrossRef
26.
Zurück zum Zitat Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45CrossRef Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45CrossRef
27.
Zurück zum Zitat Bae DS, Kim EJ, Park SW, Han KS (2005) Synthesis and characterization of nanosized ZnxMn1-xFe2O4 powders by glycothermal process. Mater Sci Forum 486:436–439CrossRef Bae DS, Kim EJ, Park SW, Han KS (2005) Synthesis and characterization of nanosized ZnxMn1-xFe2O4 powders by glycothermal process. Mater Sci Forum 486:436–439CrossRef
28.
Zurück zum Zitat Zheng ZG, Zhong XC, Zhang YH, Yu HY, Zeng DC (2008) Synthesis, structure and magnetic properties of nanocrystalline ZnxMn(1−x)Fe2O4 prepared by ball milling. J Alloy Compd 466:377–382CrossRef Zheng ZG, Zhong XC, Zhang YH, Yu HY, Zeng DC (2008) Synthesis, structure and magnetic properties of nanocrystalline ZnxMn(1−x)Fe2O4 prepared by ball milling. J Alloy Compd 466:377–382CrossRef
29.
Zurück zum Zitat Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826CrossRef Yin H, Too HP, Chow GM (2005) The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818–5826CrossRef
30.
Zurück zum Zitat Lai J, Shafi KV, Ulman A, Loos K, Yang NL, Cui MH, Locke DC (2004) Mixed iron−manganese oxide nanoparticles. J Phys Chem 108:14876–14883CrossRef Lai J, Shafi KV, Ulman A, Loos K, Yang NL, Cui MH, Locke DC (2004) Mixed iron−manganese oxide nanoparticles. J Phys Chem 108:14876–14883CrossRef
31.
Zurück zum Zitat Fannin PC, Charles SW (1991) Measurement of the Nee1 relaxation of magnetic particles in the frequency range 1 kHz to 160 MHz. J Phys D Appl Phys 24:76–77CrossRef Fannin PC, Charles SW (1991) Measurement of the Nee1 relaxation of magnetic particles in the frequency range 1 kHz to 160 MHz. J Phys D Appl Phys 24:76–77CrossRef
Metadaten
Titel
Synthesis of (Mn(1−x)Znx)Fe2O4 nanoparticles for magnetocaloric applications
verfasst von
V. A. Balanov
A. P. Kiseleva
E. F. Krivoshapkina
E. А. Kashtanov
R. R. Gimaev
V. I. Zverev
P. V. Krivoshapkin
Publikationsdatum
10.02.2020
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2020
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-020-05237-8

Weitere Artikel der Ausgabe 3/2020

Journal of Sol-Gel Science and Technology 3/2020 Zur Ausgabe

Review Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications

Sol–gel engineering to tune structural colours

Review Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition

Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Magnetic polyelectrolyte-based composites with dual anticoagulant and thrombolytic properties: towards optimal composition

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

PDMS-urethanesil hybrid multifunctional materials: combining CO2 use and sol–gel processing

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

In situ synthesis of epoxy nanocomposites with hierarchical surface-modified SiO2 clusters

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.