Skip to main content

2018 | OriginalPaper | Buchkapitel

65. Synthesis of Nanosize Particles in Thermal Plasmas

verfasst von : Yasunori Tanaka

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is devoted to a description of fundamentals of nanoparticle synthesis using a thermal plasma. Nanoparticles are receiving special attention as the next-generation materials in various industrial fields. To synthesize nanoparticles, thermal plasma is widely used as an effective heat source from its high gas temperature to evaporate feedstock to atomic materials and then as a medium to provide high-temperature gradient field for rapid cooling of evaporated materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ando Y, Zhao X, Hirahara K, Suenaga K, Bandow S, Iijima S (2000) Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem Phys Lett 323:580CrossRef Ando Y, Zhao X, Hirahara K, Suenaga K, Bandow S, Iijima S (2000) Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem Phys Lett 323:580CrossRef
Zurück zum Zitat Anekawa Y, Koseki T, Yoshida T, Akashi K (1985) The co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 49:451–456CrossRef Anekawa Y, Koseki T, Yoshida T, Akashi K (1985) The co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 49:451–456CrossRef
Zurück zum Zitat Araya T, Ibaraki Y, Endo Y, Hioki S, Kanamaru M (1988) Arc apparatus for producing ultrafine particles, US Patent 4732369 Araya T, Ibaraki Y, Endo Y, Hioki S, Kanamaru M (1988) Arc apparatus for producing ultrafine particles, US Patent 4732369
Zurück zum Zitat Barolo G, Livraghi S, Chiesa M, Cristina M, Paganini C, Giamello E (2012) Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carries migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J Phys Chem C 116:20887–20894CrossRef Barolo G, Livraghi S, Chiesa M, Cristina M, Paganini C, Giamello E (2012) Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carries migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J Phys Chem C 116:20887–20894CrossRef
Zurück zum Zitat Biju KP, Jain MK (2008) Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. Thin Solid Films 516:2175–2180CrossRef Biju KP, Jain MK (2008) Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. Thin Solid Films 516:2175–2180CrossRef
Zurück zum Zitat Bilodeau JF, Proulx P (1996) A mathematical model for ultrafine iron powder growth in thermal plasmas. Aerosol Sci Technol 24:175–189CrossRef Bilodeau JF, Proulx P (1996) A mathematical model for ultrafine iron powder growth in thermal plasmas. Aerosol Sci Technol 24:175–189CrossRef
Zurück zum Zitat Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2012) Freeflowing, transparent γ-alumina nanoparticles synthesized using a supersonic thermal plasma expansion process. Curr Appl Phys 12(3):880–884CrossRef Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2012) Freeflowing, transparent γ-alumina nanoparticles synthesized using a supersonic thermal plasma expansion process. Curr Appl Phys 12(3):880–884CrossRef
Zurück zum Zitat Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2013) Studies on a supersonic thermal plasma expansion process for synthesis of titanium nitride nanoparticles. Powder Technol 246:413–418CrossRef Bora B, Aomoa N, Bordoloi RK, Srivastava DN, Bhuyan H, Das AK, Kakati M (2013) Studies on a supersonic thermal plasma expansion process for synthesis of titanium nitride nanoparticles. Powder Technol 246:413–418CrossRef
Zurück zum Zitat Bora B, Saikia BJ, Borgohain C, Kakati M, Das AK (2010) Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion. Vacuum 85:283CrossRef Bora B, Saikia BJ, Borgohain C, Kakati M, Das AK (2010) Numerical investigation of nanoparticle synthesis in supersonic thermal plasma expansion. Vacuum 85:283CrossRef
Zurück zum Zitat Boulos MI, Jurewicz J, Guo J (2006) Induction plasma synthesis of nanopowders. US Patent 8013269 B2 Boulos MI, Jurewicz J, Guo J (2006) Induction plasma synthesis of nanopowders. US Patent 8013269 B2
Zurück zum Zitat Bystrzejewski M, Huczko A, Lange H, PLotczyk WW, Stankiewicz R, Pichler T, Gemming T, Rummeli MH (2008) A continuous synthesis of carbon nanotubes by dc thermal plasma jet. Appl Phys A Mater Sci Process 91:223CrossRef Bystrzejewski M, Huczko A, Lange H, PLotczyk WW, Stankiewicz R, Pichler T, Gemming T, Rummeli MH (2008) A continuous synthesis of carbon nanotubes by dc thermal plasma jet. Appl Phys A Mater Sci Process 91:223CrossRef
Zurück zum Zitat Cheng Y, Tanaka M, Watanabe T, Choi SY, Shin MS, Lee KH (2014) Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J Phys Conf Ser 518:012026CrossRef Cheng Y, Tanaka M, Watanabe T, Choi SY, Shin MS, Lee KH (2014) Synthesis of Ni2B nanoparticles by RF thermal plasma for fuel cell catalyst. J Phys Conf Ser 518:012026CrossRef
Zurück zum Zitat Choi SI, Nam JS, Kim JI, Hwang TH, Seo JH, Hong SH (2006) Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma. Thin Solid Films 506–507:244CrossRef Choi SI, Nam JS, Kim JI, Hwang TH, Seo JH, Hong SH (2006) Continuous process of carbon nanotubes synthesis by decomposition of methane using an arc-jet plasma. Thin Solid Films 506–507:244CrossRef
Zurück zum Zitat Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Modelling for the optimization of the reaction chamber in silicon nanoparticle synthesis by a radio-frequency induction thermal plasma. Plasma Sources Sci Technol 21(5):055007CrossRef Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Modelling for the optimization of the reaction chamber in silicon nanoparticle synthesis by a radio-frequency induction thermal plasma. Plasma Sources Sci Technol 21(5):055007CrossRef
Zurück zum Zitat Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas. Plasma Sources Sci Technol 22(3):035010CrossRef Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas. Plasma Sources Sci Technol 22(3):035010CrossRef
Zurück zum Zitat Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in cell (PSI–cell) model for gas–droplet flows. J Fluids Eng 99:325–332CrossRef Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in cell (PSI–cell) model for gas–droplet flows. J Fluids Eng 99:325–332CrossRef
Zurück zum Zitat Cruz ACD, Munz RJ (1997) Vapor phase synthesis of fine particles. IEEE Trans Plasma Sci 25:1008–1016CrossRef Cruz ACD, Munz RJ (1997) Vapor phase synthesis of fine particles. IEEE Trans Plasma Sci 25:1008–1016CrossRef
Zurück zum Zitat Cruz ACD, Munz RJ (2001) Nucleation with simultaneous chemical reaction in the vapor-phase synthesis of AlN ultrafine powders. Aerosol Sci Technol 34:499–511CrossRef Cruz ACD, Munz RJ (2001) Nucleation with simultaneous chemical reaction in the vapor-phase synthesis of AlN ultrafine powders. Aerosol Sci Technol 34:499–511CrossRef
Zurück zum Zitat Désilets M, Bilodeau JF, Proulx P (1997) Modelling of the reactive synthesis of ultrafine powders in a thermal plasma reactor. J Phys D Appl Phys 30:1951–1960CrossRef Désilets M, Bilodeau JF, Proulx P (1997) Modelling of the reactive synthesis of ultrafine powders in a thermal plasma reactor. J Phys D Appl Phys 30:1951–1960CrossRef
Zurück zum Zitat Ebbensen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220CrossRef Ebbensen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220CrossRef
Zurück zum Zitat Eguchi K, Ko IY, Sugawara T, Lee HJ, Yoshida T (1989) Process control for the formation of fine SiC powders in thermal plasma frame. J Jpn Inst Metals 53:1236–1241CrossRef Eguchi K, Ko IY, Sugawara T, Lee HJ, Yoshida T (1989) Process control for the formation of fine SiC powders in thermal plasma frame. J Jpn Inst Metals 53:1236–1241CrossRef
Zurück zum Zitat Fauchais P, Vardelle A, Denoirjean A (1997) Reactive thermal plasmas: ultrafine particle synthesis and coating deposition. Surf Coat Technol 97:66CrossRef Fauchais P, Vardelle A, Denoirjean A (1997) Reactive thermal plasmas: ultrafine particle synthesis and coating deposition. Surf Coat Technol 97:66CrossRef
Zurück zum Zitat Friedlander SK (2000) Smoke, dust and haze. Oxford University Press, New York Friedlander SK (2000) Smoke, dust and haze. Oxford University Press, New York
Zurück zum Zitat Fuchs NA (1964) Mechanics of aerosols. Pergamon, New York Fuchs NA (1964) Mechanics of aerosols. Pergamon, New York
Zurück zum Zitat Fudoligh AM, Nogami H, Yagi J (1997) Prediction of generation rates in ‘reactive arc plasma’ ultrafine powder production process. ISIJ Int 37:641CrossRef Fudoligh AM, Nogami H, Yagi J (1997) Prediction of generation rates in ‘reactive arc plasma’ ultrafine powder production process. ISIJ Int 37:641CrossRef
Zurück zum Zitat Girshick SL, Chiu CP (1990a) Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J Chem Phys 93:1273–1277CrossRef Girshick SL, Chiu CP (1990a) Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor. J Chem Phys 93:1273–1277CrossRef
Zurück zum Zitat Girshick SL, Chiu CP (1990b) Numerical study of MgO powder synthesis by thermal plasma. Aerosol Sci Technol 21:641–650CrossRef Girshick SL, Chiu CP (1990b) Numerical study of MgO powder synthesis by thermal plasma. Aerosol Sci Technol 21:641–650CrossRef
Zurück zum Zitat Girshick SL, Chiu CP, McMurry PH (1988) Modeling particle formation and growth in a plasma synthesis reactor. Plasma Chem Plasma Process 8:145–157CrossRef Girshick SL, Chiu CP, McMurry PH (1988) Modeling particle formation and growth in a plasma synthesis reactor. Plasma Chem Plasma Process 8:145–157CrossRef
Zurück zum Zitat Girshick SL, Chiu CP, McMurry PH (1990) Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci Technol 13:465–477CrossRef Girshick SL, Chiu CP, McMurry PH (1990) Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci Technol 13:465–477CrossRef
Zurück zum Zitat Girshick SL, Chiu CP, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24:367–382CrossRef Girshick SL, Chiu CP, Muno R, Wu CY, Yang L, Singh SK, McMurry PH (1993) Thermal plasma synthesis of ultrafine iron particles. J Aerosol Sci 24:367–382CrossRef
Zurück zum Zitat Gitzhofer F (1996) Induction plasma synthesis of ultrafine SiC. Pure Appl Chem 68:1113CrossRef Gitzhofer F (1996) Induction plasma synthesis of ultrafine SiC. Pure Appl Chem 68:1113CrossRef
Zurück zum Zitat Goortani BM, Mendoza-Gonzalez NY, Proulx P (2006) Synthesis of SiO2 nanoparticles in RF plasma reactors: effect of feed rate and quench gas injection. Int J Chem React Eng 4:A33 Goortani BM, Mendoza-Gonzalez NY, Proulx P (2006) Synthesis of SiO2 nanoparticles in RF plasma reactors: effect of feed rate and quench gas injection. Int J Chem React Eng 4:A33
Zurück zum Zitat Guo JY, Gitzhofer F, Boulos MI (1995) Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J Mater Sci 30:5589CrossRef Guo JY, Gitzhofer F, Boulos MI (1995) Induction plasma synthesis of ultrafine SiC powders from silicon and CH4. J Mater Sci 30:5589CrossRef
Zurück zum Zitat Harada T, Yoshida T, Koseki T, Akashi K (1985) Co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 45:1138–1145CrossRef Harada T, Yoshida T, Koseki T, Akashi K (1985) Co-condensation process of high temperature metallic vapors. J Jpn Inst Metals 45:1138–1145CrossRef
Zurück zum Zitat Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603CrossRef
Zurück zum Zitat Ishigaki T, Li JG (2007) Synthesis of functional nanocrystallites through reactive thermal plasma processing. Sci Technol Adv Mater 8:617–623CrossRef Ishigaki T, Li JG (2007) Synthesis of functional nanocrystallites through reactive thermal plasma processing. Sci Technol Adv Mater 8:617–623CrossRef
Zurück zum Zitat Ishigaki T, Oh SM, Li JG, Park DW (2005) Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci Technol Adv Mater 6:111–118CrossRef Ishigaki T, Oh SM, Li JG, Park DW (2005) Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma. Sci Technol Adv Mater 6:111–118CrossRef
Zurück zum Zitat Kakati M, Bora B, Sarma S, Saikia BJ, Shripathi T, Deshpande U, Dubey A, Ghosh G, Das AK (2008) Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion. Vacuum 82:833CrossRef Kakati M, Bora B, Sarma S, Saikia BJ, Shripathi T, Deshpande U, Dubey A, Ghosh G, Das AK (2008) Synthesis of titanium oxide and titanium nitride nanoparticles with narrow size distribution by supersonic thermal plasma expansion. Vacuum 82:833CrossRef
Zurück zum Zitat Kim KH, Choi H, Han C (2017) Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process. Metall Mater Trans A: Phys Metall Mater Sci 48(1):439–445CrossRef Kim KH, Choi H, Han C (2017) Tungsten micropowder/copper nanoparticle core/shell-structured composite powder synthesized by inductively coupled thermal plasma process. Metall Mater Trans A: Phys Metall Mater Sci 48(1):439–445CrossRef
Zurück zum Zitat Kim TH, Choi S, Park DW (2013) Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles. J Korean Phys Soc 63(10):1864–1870CrossRef Kim TH, Choi S, Park DW (2013) Effects of NH3 flow rate on the thermal plasma synthesis of AlN nanoparticles. J Korean Phys Soc 63(10):1864–1870CrossRef
Zurück zum Zitat Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375CrossRef Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375CrossRef
Zurück zum Zitat Kim YM, Kim KH, Kim B, Choi H (2016) Size and morphology manipulation of nickel nanoparticle in inductively coupled thermal plasma synthesis. J Alloys Comp 658:824–831CrossRef Kim YM, Kim KH, Kim B, Choi H (2016) Size and morphology manipulation of nickel nanoparticle in inductively coupled thermal plasma synthesis. J Alloys Comp 658:824–831CrossRef
Zurück zum Zitat Kim KS, Moradian A, Mostaghimi J, Alinejad Y, Shahverdi A, Simard B, Soucy G (2009) Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res 2:800CrossRef Kim KS, Moradian A, Mostaghimi J, Alinejad Y, Shahverdi A, Simard B, Soucy G (2009) Synthesis of single-walled carbon nanotubes by induction thermal plasma. Nano Res 2:800CrossRef
Zurück zum Zitat Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using dc-rf hybrid thermal plasmas. IEEE Trans Plasma Sci 33(2):813CrossRef Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using dc-rf hybrid thermal plasmas. IEEE Trans Plasma Sci 33(2):813CrossRef
Zurück zum Zitat Ko EH, Kim T-H, Choi S, Park D-W (2015) Synthesis of cubic boron nitride nanoparticles from boron oxide, melamine and NH3 by non-transferred Ar-N2 thermal plasma. J Nanosci Nanotechnol 15(11):8515–8520CrossRef Ko EH, Kim T-H, Choi S, Park D-W (2015) Synthesis of cubic boron nitride nanoparticles from boron oxide, melamine and NH3 by non-transferred Ar-N2 thermal plasma. J Nanosci Nanotechnol 15(11):8515–8520CrossRef
Zurück zum Zitat Kodama N, Tanaka Y, Kita K, Ishisaka Y, Uesugi Y, Ishijima T, Sueyasu S, Nakamura K (2016) Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis. J Phys D Appl Phys 49(30):305501CrossRef Kodama N, Tanaka Y, Kita K, Ishisaka Y, Uesugi Y, Ishijima T, Sueyasu S, Nakamura K (2016) Fundamental study of Ti feedstock evaporation and the precursor formation process in inductively coupled thermal plasmas during TiO2 nanopowder synthesis. J Phys D Appl Phys 49(30):305501CrossRef
Zurück zum Zitat Kodama N, Tanaka Y, Kita K, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) A method for large-scale synthesis of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J Phys D Appl Phys 47:195304CrossRef Kodama N, Tanaka Y, Kita K, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2014) A method for large-scale synthesis of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feedstock feeding. J Phys D Appl Phys 47:195304CrossRef
Zurück zum Zitat Kulkarni NV, Karmakar S, Banerjee I, Sahasrabudhe SN, Das AK, Bhoraskar SV (2009) Growth of nanoparticles of Al2O3, AlN and iron oxide with different crystalline phases in a thermal plasma reactor. Mater Res Bull 9:203–213 Kulkarni NV, Karmakar S, Banerjee I, Sahasrabudhe SN, Das AK, Bhoraskar SV (2009) Growth of nanoparticles of Al2O3, AlN and iron oxide with different crystalline phases in a thermal plasma reactor. Mater Res Bull 9:203–213
Zurück zum Zitat Lee HJ, Eguchi K, Yoshida T (1990) Preparation of ultrafine silicon nitride, and silicon nitride and slicon carbide mixed powders in a hybrid plasma. J Am Ceram Soc 73:3356–3362CrossRef Lee HJ, Eguchi K, Yoshida T (1990) Preparation of ultrafine silicon nitride, and silicon nitride and slicon carbide mixed powders in a hybrid plasma. J Am Ceram Soc 73:3356–3362CrossRef
Zurück zum Zitat Lee JE, Oh SM, Park DW (2004) Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films 457:230–234CrossRef Lee JE, Oh SM, Park DW (2004) Synthesis of nano-sized Al doped TiO2 powders using thermal plasma. Thin Solid Films 457:230–234CrossRef
Zurück zum Zitat Lee SH, Oh SM, Park DW (2007) Preparation of silver nanopowder by thermal plasma. Mater Sci Eng C 27:1286CrossRef Lee SH, Oh SM, Park DW (2007) Preparation of silver nanopowder by thermal plasma. Mater Sci Eng C 27:1286CrossRef
Zurück zum Zitat Leparoux M, Schreuders C, Shin JW, Siegmann S (2005) Induction plasma synthesis of carbide nanopowders. Adv Eng Mater 7:349CrossRef Leparoux M, Schreuders C, Shin JW, Siegmann S (2005) Induction plasma synthesis of carbide nanopowders. Adv Eng Mater 7:349CrossRef
Zurück zum Zitat Li JG, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T (2007) Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys 40:2348–2353CrossRef Li JG, Ikeda M, Ye R, Moriyoshi Y, Ishigaki T (2007) Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma. J Phys D Appl Phys 40:2348–2353CrossRef
Zurück zum Zitat Li YL, Ishigaki T (2004) Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J Phys Chem B 108(40):15536–15542CrossRef Li YL, Ishigaki T (2004) Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J Phys Chem B 108(40):15536–15542CrossRef
Zurück zum Zitat Li J, Zhao X, Wei H, Gu ZZ, Lu Z (2008) Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor. Anal Chem Acta 625:63–69CrossRef Li J, Zhao X, Wei H, Gu ZZ, Lu Z (2008) Macroporous ordered titanium dioxide (TiO2) inverse opal as a new label-free immunosensor. Anal Chem Acta 625:63–69CrossRef
Zurück zum Zitat Malato S, Blanco J, Alarcon DC, Maldonado MI, Fernandez-Ibanez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149CrossRef Malato S, Blanco J, Alarcon DC, Maldonado MI, Fernandez-Ibanez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149CrossRef
Zurück zum Zitat Marion F, Munz RJ, Dolbec R, Xue S, Boulos M (2007) Effect of plasma power and precursor size distribution on alumina nanoparticles produced in an inductively coupled plasma (ICP) reactor. J Thermal Spray Technol 17:533–550 Marion F, Munz RJ, Dolbec R, Xue S, Boulos M (2007) Effect of plasma power and precursor size distribution on alumina nanoparticles produced in an inductively coupled plasma (ICP) reactor. J Thermal Spray Technol 17:533–550
Zurück zum Zitat McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27:255–265CrossRef McGraw R (1997) Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci Technol 27:255–265CrossRef
Zurück zum Zitat Mendoza-Gonzalez NY, Goortani BM, Proulx P (2007a) Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench. Mater Sci Eng C 27:1265–1269CrossRef Mendoza-Gonzalez NY, Goortani BM, Proulx P (2007a) Numerical simulation of silica nanoparticles production in an RF plasma reactor: effect of quench. Mater Sci Eng C 27:1265–1269CrossRef
Zurück zum Zitat Mendoza-Gonzalez NY, Morsli ME, Proulx P (2007b) Production of nanoparticles in thermal plasmas: a model including evaporation, nucleation, condensation and fractal aggregation. J Thermal Spray Technol 17:533–550CrossRef Mendoza-Gonzalez NY, Morsli ME, Proulx P (2007b) Production of nanoparticles in thermal plasmas: a model including evaporation, nucleation, condensation and fractal aggregation. J Thermal Spray Technol 17:533–550CrossRef
Zurück zum Zitat Murphy AB (2004) Formation of titanium nanoparticles from a titanium tetrachloride plasma. J Phys D Appl Phys 37:2841–2847CrossRef Murphy AB (2004) Formation of titanium nanoparticles from a titanium tetrachloride plasma. J Phys D Appl Phys 37:2841–2847CrossRef
Zurück zum Zitat Oh SM, Ishigaki T (2004) Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma. Thin Solid Films 457:186–191CrossRef Oh SM, Ishigaki T (2004) Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma. Thin Solid Films 457:186–191CrossRef
Zurück zum Zitat Oh SM, Park DW (1998) Preparation of AlN fine powder by thermal plasma processing. Thin Solid Films 316:189CrossRef Oh SM, Park DW (1998) Preparation of AlN fine powder by thermal plasma processing. Thin Solid Films 316:189CrossRef
Zurück zum Zitat Ohno S, Uda M (1984) Generation rate of ultrafine metal particles in hydrogen plasma: metal reaction. J Jpn Ins Metals 48:640. (in Japanese)CrossRef Ohno S, Uda M (1984) Generation rate of ultrafine metal particles in hydrogen plasma: metal reaction. J Jpn Ins Metals 48:640. (in Japanese)CrossRef
Zurück zum Zitat Ostrikov K, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRef Ostrikov K, Murphy AB (2007) Plasma-aided nanofabrication: where is the cutting edge? J Phys D Appl Phys 40:2223–2241CrossRef
Zurück zum Zitat Proulx P, Bilodeau JF (1989) Particle coagulation, diffusion and themophoresis in laminar tube flows. J Aerosol Sci 20:101–111CrossRef Proulx P, Bilodeau JF (1989) Particle coagulation, diffusion and themophoresis in laminar tube flows. J Aerosol Sci 20:101–111CrossRef
Zurück zum Zitat Proulx P, Mostaghimi J, Boulos MI (1985) Plasma–particle interaction effects in induction plasma modeling under dense loading conditions. Int J Heat Mass Transf 28:1327–1336CrossRef Proulx P, Mostaghimi J, Boulos MI (1985) Plasma–particle interaction effects in induction plasma modeling under dense loading conditions. Int J Heat Mass Transf 28:1327–1336CrossRef
Zurück zum Zitat Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powder in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process 7:29–52CrossRef Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powder in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Process 7:29–52CrossRef
Zurück zum Zitat Seo JH, Hong BG (2012) Thermal plasma synthesis of nano-sized powders. Nucl Eng Technol 44:9–19CrossRef Seo JH, Hong BG (2012) Thermal plasma synthesis of nano-sized powders. Nucl Eng Technol 44:9–19CrossRef
Zurück zum Zitat Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang SL (2000) Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solids 61:1031CrossRef Shi Z, Lian Y, Liao FH, Zhou X, Gu Z, Zhang Y, Iijima S, Li H, Yue KT, Zhang SL (2000) Large scale synthesis of single-wall carbon nanotubes by arc-discharge method. J Phys Chem Solids 61:1031CrossRef
Zurück zum Zitat Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025CrossRef Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025CrossRef
Zurück zum Zitat Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419CrossRef Shigeta M, Watanabe T (2007) Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas. J Phys D Appl Phys 40:2407–2419CrossRef
Zurück zum Zitat Shigeta M, Watanabe T (2008) Numerical investigation of cooling effect on platinum nanoparticle formation in an inductively coupled thermal plasma. J Appl Phys 103:074903CrossRef Shigeta M, Watanabe T (2008) Numerical investigation of cooling effect on platinum nanoparticle formation in an inductively coupled thermal plasma. J Appl Phys 103:074903CrossRef
Zurück zum Zitat Shigeta M, Watanabe T (2010) Growth mechanism of binary alloy nanopowders for thermal plasma synthesis. J Appl Phys 108:043306CrossRef Shigeta M, Watanabe T (2010) Growth mechanism of binary alloy nanopowders for thermal plasma synthesis. J Appl Phys 108:043306CrossRef
Zurück zum Zitat Smoluchowski M (1916) Drei Vortrage uber Diffusion, Brownsche Molekularbewegung undKoagulation von Kolloidteilchen. Z Physik Z 17(557–571):585–599 Smoluchowski M (1916) Drei Vortrage uber Diffusion, Brownsche Molekularbewegung undKoagulation von Kolloidteilchen. Z Physik Z 17(557–571):585–599
Zurück zum Zitat Son S, Taheri M, Carpenter E, Harris VG, McHenry ME (2002) Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch. J Appl Phys 91:7589CrossRef Son S, Taheri M, Carpenter E, Harris VG, McHenry ME (2002) Synthesis of ferrite and nickel ferrite nanoparticles using radiofrequency thermal plasma torch. J Appl Phys 91:7589CrossRef
Zurück zum Zitat Sone H, Kageyama T, Tanaka M, Okamoto D, Watanabe T (2016) Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure. Jpn J Appl Phys 55(7S2):07LE04CrossRef Sone H, Kageyama T, Tanaka M, Okamoto D, Watanabe T (2016) Induction thermal plasma synthesis of lithium oxide composite nanoparticles with a spinel structure. Jpn J Appl Phys 55(7S2):07LE04CrossRef
Zurück zum Zitat Soucy G, Jurewicz JW, Boulos MI (1995) Parametric study of the plasma synthesis of ultrafine silicon nitride powders. J Mater Sci 30(8):2008–2018CrossRef Soucy G, Jurewicz JW, Boulos MI (1995) Parametric study of the plasma synthesis of ultrafine silicon nitride powders. J Mater Sci 30(8):2008–2018CrossRef
Zurück zum Zitat Stein M, Kruis FE (2015) Scale-up of metal nanoparticle production. NSTI: Adv Mater Tech Connect Briefs 1:203–206 Stein M, Kruis FE (2015) Scale-up of metal nanoparticle production. NSTI: Adv Mater Tech Connect Briefs 1:203–206
Zurück zum Zitat Stein M, Kruis FE (2016) Optimization of a transferred arc reactor for metal nanoparticle synthesis. J Nanopart Res 18(9):258CrossRef Stein M, Kruis FE (2016) Optimization of a transferred arc reactor for metal nanoparticle synthesis. J Nanopart Res 18(9):258CrossRef
Zurück zum Zitat Tanaka M, Kageyama T, Sone H, Yoshida S, Okamoto D, Watanabe T (2016) Synthesis of lithium metal oxide nanoparticles by induction thermal plasmas. Nano 6(4):60 Tanaka M, Kageyama T, Sone H, Yoshida S, Okamoto D, Watanabe T (2016) Synthesis of lithium metal oxide nanoparticles by induction thermal plasmas. Nano 6(4):60
Zurück zum Zitat Tanaka Y, Nagumo T, Sakai H, Uesugi Y, Nakamura K (2010) Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma. J Phys D Appl Phys 43:265201CrossRef Tanaka Y, Nagumo T, Sakai H, Uesugi Y, Nakamura K (2010) Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma. J Phys D Appl Phys 43:265201CrossRef
Zurück zum Zitat Tanaka Y, Tsuke T, Guo W, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2012) A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J Phys D: Conf Ser 406:012001 Tanaka Y, Tsuke T, Guo W, Uesugi Y, Ishijima T, Watanabe S, Nakamura K (2012) A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials. J Phys D: Conf Ser 406:012001
Zurück zum Zitat Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn-Ag mixture by Ar-H2 arc for nanoparticle preparation. Thin Solid Films 516(19):6645–6649CrossRef Tanaka M, Watanabe T (2008) Vaporization mechanism from Sn-Ag mixture by Ar-H2 arc for nanoparticle preparation. Thin Solid Films 516(19):6645–6649CrossRef
Zurück zum Zitat Thompson D, Leparoux M, Jaeggi C, Buha J, Pui DYH, Wang J (2013) Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis. J Nanopart Res 15:12CrossRef Thompson D, Leparoux M, Jaeggi C, Buha J, Pui DYH, Wang J (2013) Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis. J Nanopart Res 15:12CrossRef
Zurück zum Zitat Tong L, Reddy RG (2005) Synthesis of titanium carbide nano-powders by thermal plasma. Scr Mater 52:1253CrossRef Tong L, Reddy RG (2005) Synthesis of titanium carbide nano-powders by thermal plasma. Scr Mater 52:1253CrossRef
Zurück zum Zitat Tong L, Reddy RG (2006) Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater Res Bull 41:2303–2310CrossRef Tong L, Reddy RG (2006) Thermal plasma synthesis of SiC nano-powders/nano-fibers. Mater Res Bull 41:2303–2310CrossRef
Zurück zum Zitat Tsai YC, Hsi CH, Bai H, Fan SK, Sun DH (2012) Single-step synthesis of Al-doped TiO2 nanoparticles using non-transferred thermal plasma torch. Jpn J Appl Phys 51:01AL01CrossRef Tsai YC, Hsi CH, Bai H, Fan SK, Sun DH (2012) Single-step synthesis of Al-doped TiO2 nanoparticles using non-transferred thermal plasma torch. Jpn J Appl Phys 51:01AL01CrossRef
Zurück zum Zitat Uda M, Ohno S, Hoshi T (1983) Process for producing fine metal particles. US Patent 4376740 Uda M, Ohno S, Hoshi T (1983) Process for producing fine metal particles. US Patent 4376740
Zurück zum Zitat Uda M, Ohno S, Okuyama H (1987) Process for producing particles of ceramic. US Patent 4642207 Uda M, Ohno S, Okuyama H (1987) Process for producing particles of ceramic. US Patent 4642207
Zurück zum Zitat Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005) Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127:10982–10990CrossRef Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005) Pyrogenic iron (III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127:10982–10990CrossRef
Zurück zum Zitat Watanabe T, Itoh H, Ishii Y (2001) Preparation of ultrafine particles of silicon base intermetallic compound by arc plasma method. Thin Solid Films 390(1–2):44–50CrossRef Watanabe T, Itoh H, Ishii Y (2001) Preparation of ultrafine particles of silicon base intermetallic compound by arc plasma method. Thin Solid Films 390(1–2):44–50CrossRef
Zurück zum Zitat Watanabe T, Tanaka M, Shimizu T, Liang F (2013) Metal nanoparticle production by anode jet of argon-hydrogen dc arc. Adv Mater Res 628:11–14CrossRef Watanabe T, Tanaka M, Shimizu T, Liang F (2013) Metal nanoparticle production by anode jet of argon-hydrogen dc arc. Adv Mater Res 628:11–14CrossRef
Zurück zum Zitat Yoshida T, Akashi K (1981) Preparation of ultrafine iron particles using an RF plasma. Trans Jpn Inst Metals 22:371–378CrossRef Yoshida T, Akashi K (1981) Preparation of ultrafine iron particles using an RF plasma. Trans Jpn Inst Metals 22:371–378CrossRef
Zurück zum Zitat Yoshida T, Kawasaki A, Nakagawa K, Akashi K (1979) The synthesis of ultrafine titanium nitride in an rf plasma. J Mater Sci 14:1624–1630CrossRef Yoshida T, Kawasaki A, Nakagawa K, Akashi K (1979) The synthesis of ultrafine titanium nitride in an rf plasma. J Mater Sci 14:1624–1630CrossRef
Zurück zum Zitat Yoshida T, Tani T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646CrossRef Yoshida T, Tani T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646CrossRef
Zurück zum Zitat Zhang C, Li JG, Uchikoshi T, Watanabe T, Ishigaki T (2010) (Eu3+-Nb5+)-codoped TiO2 nanopowders synthesized via Ar/O2 radio-frequency thermal plasma oxidation processing: phase composition and photoluminescence properties through energy transfer. Thin Solid Films 518:3531–3334CrossRef Zhang C, Li JG, Uchikoshi T, Watanabe T, Ishigaki T (2010) (Eu3+-Nb5+)-codoped TiO2 nanopowders synthesized via Ar/O2 radio-frequency thermal plasma oxidation processing: phase composition and photoluminescence properties through energy transfer. Thin Solid Films 518:3531–3334CrossRef
Zurück zum Zitat Zhang C, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2014) Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas. J Alloys Compd 606:37–43CrossRef Zhang C, Uchikoshi T, Li JG, Watanabe T, Ishigaki T (2014) Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas. J Alloys Compd 606:37–43CrossRef
Metadaten
Titel
Synthesis of Nanosize Particles in Thermal Plasmas
verfasst von
Yasunori Tanaka
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_31

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.