Skip to main content

2013 | OriginalPaper | Buchkapitel

12. Synthesis, Properties, and Applications of One-Dimensional Transition Metal Silicide Nanostructures

verfasst von : Guangwei She, Hailong Liu, Lixuan Mu, Wensheng Shi

Erschienen in: Silicon-based Nanomaterials

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One-dimensional (1D) nanostructures of transition metal silicide (TMS) have attracted more attention due to their unique properties and potential applications in microelectronics. A variety of synthetic approaches were developed to fabricate 1D TMS nanostructures. Chemical vapor deposition (CVD) is the most widely used method to synthesize 1D TMS nanostructures. Various precursors and growth mechanisms are involved in the CVD processes. Other methods such as chemical vapor transport (CVT) method, silicidation method, reactive epitaxial method, hydrothermal method, were also successfully employed for the formation of 1D TMS nanostructures. Electrical transport measurements reveal that many TMS nanowires exhibit metallic behavior with extremely high conductivity. At the same time, semiconducting behaviors were observed in some situations. Some silicide nanowires (silicides of Fe, Co, Ni, Cr, Mn, etc.) have ferromagnetic properties, even at room temperature. Unique properties such as field-emission, optical, thermoelectric, mechanical were also investigated in the 1D TMS nanostructures. Based on these properties, 1D TMS nanostructures were utilized in microelectronic devices, lithium ion batteries, memory device and capacitor, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dimitriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, M., Weber, J., Nesper, R.: Electronic properties of semiconducting FeSi\(_{2}\) films. J. Appl. Phys. 68, 1726–1734 (1990) Dimitriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, M., Weber, J., Nesper, R.: Electronic properties of semiconducting FeSi\(_{2}\) films. J. Appl. Phys. 68, 1726–1734 (1990)
2.
Zurück zum Zitat Starke, U., Weiss, W., Kutschera, M., Bandorf, R., Heinz, K.: High quality iron silicide films by simultaneous deposition of iron and silicon on Si(111). J. Appl. Phys. 91, 6154–6161 (2002) Starke, U., Weiss, W., Kutschera, M., Bandorf, R., Heinz, K.: High quality iron silicide films by simultaneous deposition of iron and silicon on Si(111). J. Appl. Phys. 91, 6154–6161 (2002)
3.
Zurück zum Zitat Ouyang, L., Thrall, E.S., Deshmukh, M.M., Park, H.: vapor-phase synthesis and characterization of \(\varepsilon \)-FeSi nanowires. Adv. Mater. 18, 1437–1440 (2006) Ouyang, L., Thrall, E.S., Deshmukh, M.M., Park, H.: vapor-phase synthesis and characterization of \(\varepsilon \)-FeSi nanowires. Adv. Mater. 18, 1437–1440 (2006)
4.
Zurück zum Zitat Lin, H.K., Tzeng, Y.F., Wang, C.H., Tai, N.H., Lin, I.N., Lee, C.Y., Chiu, H.T.: Ti\(_{5}\)Si\(_{3}\) nanowire and its field emission property. Chem. Mater. 20, 2429–2431 (2008) Lin, H.K., Tzeng, Y.F., Wang, C.H., Tai, N.H., Lin, I.N., Lee, C.Y., Chiu, H.T.: Ti\(_{5}\)Si\(_{3}\) nanowire and its field emission property. Chem. Mater. 20, 2429–2431 (2008)
5.
Zurück zum Zitat Lin, H.K., Cheng, H.A., Lee, C.Y., Chiu, H.T.: Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: an amorphous titanium silicide interlayer assisted nanowire growth. Chem. Mater. 21, 5388–5396 (2009) Lin, H.K., Cheng, H.A., Lee, C.Y., Chiu, H.T.: Chemical vapor deposition of TiSi nanowires on C54 TiSi2 thin film: an amorphous titanium silicide interlayer assisted nanowire growth. Chem. Mater. 21, 5388–5396 (2009)
6.
Zurück zum Zitat In, J., Seo, K., Lee, S., Yoon, H., Park, J., Lee, G., Kim, B.: Morphology-tuned synthesis of single-crystalline V\(_{5}\)Si\(_{3}\) nanotubes and nanowires. J. Phys. Chem. C 113, 12996–13001 (2009) In, J., Seo, K., Lee, S., Yoon, H., Park, J., Lee, G., Kim, B.: Morphology-tuned synthesis of single-crystalline V\(_{5}\)Si\(_{3}\) nanotubes and nanowires. J. Phys. Chem. C 113, 12996–13001 (2009)
7.
Zurück zum Zitat Higgins, J.M., Ding, R., DeGrave, J.P., Jin, S.: Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett. 10, 1605–1610 (2010) Higgins, J.M., Ding, R., DeGrave, J.P., Jin, S.: Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett. 10, 1605–1610 (2010)
8.
Zurück zum Zitat Liang, S., Fang, X., Xia, T.L., Qing, Y., Guo, Z.X.: Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J. Phys. Chem. C 114, 16187–16190 (2010) Liang, S., Fang, X., Xia, T.L., Qing, Y., Guo, Z.X.: Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J. Phys. Chem. C 114, 16187–16190 (2010)
9.
Zurück zum Zitat Decker, C.A., Solanki, R., Freeouf, J.L., Carruthers, J.R., Evans, D.R.: Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 84, 1389–1391 (2004) Decker, C.A., Solanki, R., Freeouf, J.L., Carruthers, J.R., Evans, D.R.: Directed growth of nickel silicide nanowires. Appl. Phys. Lett. 84, 1389–1391 (2004)
10.
Zurück zum Zitat Dubois, L.H., Nuzzo, R.G.: The decomposition of silane and germane on Ni(111): implications for heterogeneous catalysis. Surf. Sci. 149, 133–145 (1985) Dubois, L.H., Nuzzo, R.G.: The decomposition of silane and germane on Ni(111): implications for heterogeneous catalysis. Surf. Sci. 149, 133–145 (1985)
11.
Zurück zum Zitat Yan, X.Q., Yuan, H.J., Wang, J.X., Liu, D.F., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Synthesis and characterization of a large amount of branched N\(_{2}\)Si nanowires. Appl. Phys. A Mater. Sci. Process. 79, 1853–1856 (2004) Yan, X.Q., Yuan, H.J., Wang, J.X., Liu, D.F., Zhou, Z.P., Gao, Y., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Xie, S.S.: Synthesis and characterization of a large amount of branched N\(_{2}\)Si nanowires. Appl. Phys. A Mater. Sci. Process. 79, 1853–1856 (2004)
12.
Zurück zum Zitat Lee, K.S., Mo, Y.H., Nahm, K.S., Shim, H.W., Suh, E.K., Kim, J.R., Kim, J.J.: Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chem. Phys. Lett. 384, 215–218 (2004) Lee, K.S., Mo, Y.H., Nahm, K.S., Shim, H.W., Suh, E.K., Kim, J.R., Kim, J.J.: Anomalous growth and characterization of carbon-coated nickel silicide nanowires. Chem. Phys. Lett. 384, 215–218 (2004)
13.
Zurück zum Zitat Kim, C.J., Kang, K., Woo, Y.S., Ryu, K.G., Moon, H., Kim, J.M., Zang, D.S., Jo, M.H.: Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 19, 3637–3642 (2007) Kim, C.J., Kang, K., Woo, Y.S., Ryu, K.G., Moon, H., Kim, J.M., Zang, D.S., Jo, M.H.: Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties. Adv. Mater. 19, 3637–3642 (2007)
14.
Zurück zum Zitat Kang, K., Kim, S.K., Kim, C.J., Jo, M.H.: The role of NiO\(_{x}\) overlayers on spontaneous growth of NiSi\(_{x}\) nanowires from Ni seed layers. Nano Lett. 8, 431–436 (2008) Kang, K., Kim, S.K., Kim, C.J., Jo, M.H.: The role of NiO\(_{x}\) overlayers on spontaneous growth of NiSi\(_{x}\) nanowires from Ni seed layers. Nano Lett. 8, 431–436 (2008)
15.
Zurück zum Zitat Zhang, H.L., Li, F., Liu, C., Chen, H.M.: The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage. Nanotechnology 19, 165606 (2008) Zhang, H.L., Li, F., Liu, C., Chen, H.M.: The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage. Nanotechnology 19, 165606 (2008)
16.
Zurück zum Zitat Chueh, Y.L., Chou, L.J., Cheng, S.L., Chen, L.J., Tsai, C.J., Hsu, C.M., Kung, S.C.: Synthesis and characterization of metallic TaSi\(_{2}\) nanowires. Appl. Phys. Lett. 87, 223113–223113 (2005) Chueh, Y.L., Chou, L.J., Cheng, S.L., Chen, L.J., Tsai, C.J., Hsu, C.M., Kung, S.C.: Synthesis and characterization of metallic TaSi\(_{2}\) nanowires. Appl. Phys. Lett. 87, 223113–223113 (2005)
17.
Zurück zum Zitat Chueh, Y.L., Ko, M.T., Chou, L.J., Chen, L.J., Wu, C.S., Chen, C.D.: TaSi\(_{2}\) nanowires: a potential field emitter and interconnect. Nano Lett. 6, 1637–1644 (2006) Chueh, Y.L., Ko, M.T., Chou, L.J., Chen, L.J., Wu, C.S., Chen, C.D.: TaSi\(_{2}\) nanowires: a potential field emitter and interconnect. Nano Lett. 6, 1637–1644 (2006)
18.
Zurück zum Zitat Chou, L.J., Chueh, Y.L., Ko, M.T.: Interconnect and contact for nanoelectronics: metallic TaSi\(_{2}\) nanowires. Thin Solid Films 515, 8109–8112 (2007) Chou, L.J., Chueh, Y.L., Ko, M.T.: Interconnect and contact for nanoelectronics: metallic TaSi\(_{2}\) nanowires. Thin Solid Films 515, 8109–8112 (2007)
19.
Zurück zum Zitat Tang, C., Bando, Y., Golberg, D., Ding, X., Qi, S.: Boron nitride nanotubes filled with Ni and NiSi2 nanowires in situ. J. Phys. Chem. B 107, 6539–6543 (2003) Tang, C., Bando, Y., Golberg, D., Ding, X., Qi, S.: Boron nitride nanotubes filled with Ni and NiSi2 nanowires in situ. J. Phys. Chem. B 107, 6539–6543 (2003)
20.
Zurück zum Zitat Xiang, B., Wang, Q.X., Wang, Z., Zhang, X.Z., Liu, L.Q., Xu, J., Yu, D.P.: Synthesis and field emission properties of TiSi\(_{2}\) nanowires. Appl. Phys. Lett. 86, 243103–243103 (2005) Xiang, B., Wang, Q.X., Wang, Z., Zhang, X.Z., Liu, L.Q., Xu, J., Yu, D.P.: Synthesis and field emission properties of TiSi\(_{2}\) nanowires. Appl. Phys. Lett. 86, 243103–243103 (2005)
21.
Zurück zum Zitat Zou, C., Zhang, X., Jing, G., Zhang, J., Liao, Z., Yu, D.: Synthesis and electrical properties of TiSi\(_{2}\) nanocables. Appl. Phys. Lett. 92, 253102–253103 (2008) Zou, C., Zhang, X., Jing, G., Zhang, J., Liao, Z., Yu, D.: Synthesis and electrical properties of TiSi\(_{2}\) nanocables. Appl. Phys. Lett. 92, 253102–253103 (2008)
22.
Zurück zum Zitat Zhang, Z.Y., Wu, X.L., Yang, L.W., Huang, G.S., Siu, G.G., Chu, P.K.: Catalytic growth of \(\alpha \)-FeSi\(_{2}\) and silicon nanowires. J. Cryst. Growth 280, 286–291 (2005) Zhang, Z.Y., Wu, X.L., Yang, L.W., Huang, G.S., Siu, G.G., Chu, P.K.: Catalytic growth of \(\alpha \)-FeSi\(_{2}\) and silicon nanowires. J. Cryst. Growth 280, 286–291 (2005)
23.
Zurück zum Zitat Joshi, R.K., Yoshimura, M., Tanaka, K., Ueda, K., Kumar, A., Ramgir, N.: Synthesis of vertically aligned Pd\(_{2}\)Si nanowires in microwave plasma enhanced chemical vapor deposition system. J. Phys. Chem. C 112, 13901–13904 (2008) Joshi, R.K., Yoshimura, M., Tanaka, K., Ueda, K., Kumar, A., Ramgir, N.: Synthesis of vertically aligned Pd\(_{2}\)Si nanowires in microwave plasma enhanced chemical vapor deposition system. J. Phys. Chem. C 112, 13901–13904 (2008)
24.
Zurück zum Zitat Chang, M.T., Chen, C.Y., Chou, L.J., Chen, L.J.: Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems. ACS Nano 3, 3776–3780 (2009) Chang, M.T., Chen, C.Y., Chou, L.J., Chen, L.J.: Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems. ACS Nano 3, 3776–3780 (2009)
25.
Zurück zum Zitat Higgins, J.M., Ding, R., Jin, S.: Synthesis and characterization of manganese-rich silicide (\(\alpha \)-Mn\(_{5}\)Si\(_{3}\), \(\beta \)-Mn\(_{5}\)Si\(_{3}\), and \(\beta \)-Mn\(_{3}\)Si) nanowires. Chem. Mater. 23, 3848–3853 (2011) Higgins, J.M., Ding, R., Jin, S.: Synthesis and characterization of manganese-rich silicide (\(\alpha \)-Mn\(_{5}\)Si\(_{3}\), \(\beta \)-Mn\(_{5}\)Si\(_{3}\), and \(\beta \)-Mn\(_{3}\)Si) nanowires. Chem. Mater. 23, 3848–3853 (2011)
26.
Zurück zum Zitat Chang, C.M., Chang, Y.C., Lee, C.Y., Yeh, P.H., Lee, W.F., Chen, L.J.: Ti\(_{5}\)Si\(_{4}\) nanobats with excellent field emission properties. J. Phys. Chem. C 113, 9153–9156 (2009) Chang, C.M., Chang, Y.C., Lee, C.Y., Yeh, P.H., Lee, W.F., Chen, L.J.: Ti\(_{5}\)Si\(_{4}\) nanobats with excellent field emission properties. J. Phys. Chem. C 113, 9153–9156 (2009)
27.
Zurück zum Zitat Chen, C.Y., Lin, Y.K., Hsu, C.W., Wang, C.Y., Chueh, Y.L., Chen, L.J., Lo, S.C., Chou, L.J.: Coaxial metal-silicide Ni\(_{2}\)Si/C54-TiSi\(_{2}\) nanowires. Nano Lett. 12, 2254–2259 (2012) Chen, C.Y., Lin, Y.K., Hsu, C.W., Wang, C.Y., Chueh, Y.L., Chen, L.J., Lo, S.C., Chou, L.J.: Coaxial metal-silicide Ni\(_{2}\)Si/C54-TiSi\(_{2}\) nanowires. Nano Lett. 12, 2254–2259 (2012)
28.
Zurück zum Zitat Du, J., Du, P., Hao, P., Huang, Y., Ren, Z., Han, G., Weng, W., Zhao, G.: Growth mechanism of TiSi nanopins on Ti\(_{5}\)Si\(_{3}\) by atmospheric pressure chemical vapor deposition. J. Phys. Chem. C 111, 10814–10817 (2007) Du, J., Du, P., Hao, P., Huang, Y., Ren, Z., Han, G., Weng, W., Zhao, G.: Growth mechanism of TiSi nanopins on Ti\(_{5}\)Si\(_{3}\) by atmospheric pressure chemical vapor deposition. J. Phys. Chem. C 111, 10814–10817 (2007)
29.
Zurück zum Zitat Jun, D., Piyi, D., Peng, H., Yanfei, H., Zhaodi, R., Wenjian, W., Gaorong, H., Gaoling, Z.: Self-induced preparation of TiSi nanopins by chemical vapor deposition. Nanotechnology 18, 345605 (2007) Jun, D., Piyi, D., Peng, H., Yanfei, H., Zhaodi, R., Wenjian, W., Gaorong, H., Gaoling, Z.: Self-induced preparation of TiSi nanopins by chemical vapor deposition. Nanotechnology 18, 345605 (2007)
30.
Zurück zum Zitat Du, J., Ren, Z., Tao, K., Hu, A., Hao, P., Huang, Y., Zhao, G., Weng, W., Han, G., Du, P.: Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition. Cryst. Growth Des. 8, 3543–3548 (2008) Du, J., Ren, Z., Tao, K., Hu, A., Hao, P., Huang, Y., Zhao, G., Weng, W., Han, G., Du, P.: Self-induced preparation of assembled shrubbery TiSi nanowires by chemical vapor deposition. Cryst. Growth Des. 8, 3543–3548 (2008)
31.
Zurück zum Zitat Ren, Z., Hu, A., Tao, K., Du, J., Weng, W., Ma, N., Du, P.: Preparation of TiSi nanowires by APCVD used for improving dielectric properties of PST thin film. Thin Solid Films 517, 5014–5017 (2009) Ren, Z., Hu, A., Tao, K., Du, J., Weng, W., Ma, N., Du, P.: Preparation of TiSi nanowires by APCVD used for improving dielectric properties of PST thin film. Thin Solid Films 517, 5014–5017 (2009)
32.
Zurück zum Zitat Ren, Z., Hao, P., Du, J., Han, G., Weng, W., Ma, N., Du, P.: Self-assembly of TiSi nanowires on TiSi\(_{2}\) thin films by APCVD. J. Alloy. Compd. 509, 7519–7524 (2011) Ren, Z., Hao, P., Du, J., Han, G., Weng, W., Ma, N., Du, P.: Self-assembly of TiSi nanowires on TiSi\(_{2}\) thin films by APCVD. J. Alloy. Compd. 509, 7519–7524 (2011)
33.
Zurück zum Zitat Ren, Z., Shen, M., Han, G., Weng, W., Ma, N., Du, P.: Influence of substrates on the formation of the TiSi nanowire by atmosphere pressure chemical vapor deposition. J. Nanosci. Nanotechnol. 11, 11151–11155 (2011) Ren, Z., Shen, M., Han, G., Weng, W., Ma, N., Du, P.: Influence of substrates on the formation of the TiSi nanowire by atmosphere pressure chemical vapor deposition. J. Nanosci. Nanotechnol. 11, 11151–11155 (2011)
34.
Zurück zum Zitat Zhou, S., Liu, X., Lin, Y., Wang, D.: Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. Angew. Chem. Int. Ed. 47, 7681–7684 (2008) Zhou, S., Liu, X., Lin, Y., Wang, D.: Spontaneous growth of highly conductive two-dimensional single-crystalline TiSi2 nanonets. Angew. Chem. Int. Ed. 47, 7681–7684 (2008)
35.
Zurück zum Zitat Zhou, S., Liu, X., Lin, Y., Wang, D.: Rational synthesis and structural characterizations of complex TiSi\(_{2}\) nanostructures. Chem. Mater. 21, 1023–1027 (2009) Zhou, S., Liu, X., Lin, Y., Wang, D.: Rational synthesis and structural characterizations of complex TiSi\(_{2}\) nanostructures. Chem. Mater. 21, 1023–1027 (2009)
36.
Zurück zum Zitat Zhou, S., Xie, J., Wang, D.: Understanding the growth mechanism of titanium disilicide nanonets. ACS Nano 5, 4205–4210 (2011) Zhou, S., Xie, J., Wang, D.: Understanding the growth mechanism of titanium disilicide nanonets. ACS Nano 5, 4205–4210 (2011)
37.
Zurück zum Zitat Zhang, Y., Geng, D., Liu, H., Banis, M.N., Ionescu, M.I., Li, R., Cai, M., Sun, X.: Designed growth and characterization of radially aligned Ti\(_{5}\)Si\(_{3}\) nanowire architectures. J. Phys. Chem. C 115, 15885–15889 (2011) Zhang, Y., Geng, D., Liu, H., Banis, M.N., Ionescu, M.I., Li, R., Cai, M., Sun, X.: Designed growth and characterization of radially aligned Ti\(_{5}\)Si\(_{3}\) nanowire architectures. J. Phys. Chem. C 115, 15885–15889 (2011)
38.
Zurück zum Zitat Ham, M.H., Lee, J.W., Moon, K.J., Choi, J.H., Myoung, J.M.: Single-crystalline ferromagnetic Mn4Si7 nanowires. J. Phys. Chem. C 113, 8143–8146 (2009) Ham, M.H., Lee, J.W., Moon, K.J., Choi, J.H., Myoung, J.M.: Single-crystalline ferromagnetic Mn4Si7 nanowires. J. Phys. Chem. C 113, 8143–8146 (2009)
39.
Zurück zum Zitat Lee, S.T., Zhang, Y.F., Wang, N., Tang, Y.H., Bello, I., Lee, C.S., Chung, Y.W.: Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503–4507 (1999) Lee, S.T., Zhang, Y.F., Wang, N., Tang, Y.H., Bello, I., Lee, C.S., Chung, Y.W.: Semiconductor nanowires from oxides. J. Mater. Res. 14, 4503–4507 (1999)
40.
Zurück zum Zitat Higgins, J.M., Schmitt, A.L., Guzei, I.A., Jin, S.: Higher manganese silicide nanowires of nowotny chimney ladder phase. J. Am. Chem. Soc. 130, 16086–16094 (2008) Higgins, J.M., Schmitt, A.L., Guzei, I.A., Jin, S.: Higher manganese silicide nanowires of nowotny chimney ladder phase. J. Am. Chem. Soc. 130, 16086–16094 (2008)
41.
Zurück zum Zitat Schmitt, A.L., Zhu, L., D. Schmei\(\beta \)er, F.J. Himpsel, Jin. S.: Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. J. Phys. Chem. B 110, 18142–18146 (2006) Schmitt, A.L., Zhu, L., D. Schmei\(\beta \)er, F.J. Himpsel, Jin. S.: Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. J. Phys. Chem. B 110, 18142–18146 (2006)
42.
Zurück zum Zitat Schmitt, A.L., Bierman, M.J., Schmeisser, D., Himpsel, F.J., Jin, S.: Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 6, 1617–1621 (2006) Schmitt, A.L., Bierman, M.J., Schmeisser, D., Himpsel, F.J., Jin, S.: Synthesis and properties of single-crystal FeSi nanowires. Nano Lett. 6, 1617–1621 (2006)
43.
Zurück zum Zitat Schmitt, A.L., Higgins, J.M., Jin, S.: Chemical synthesis and magnetotransport of magnetic semiconducting Fe\(_{1-x}\)Co\(_{x}\)Si alloy nanowires. Nano Lett. 8, 810–815 (2008) Schmitt, A.L., Higgins, J.M., Jin, S.: Chemical synthesis and magnetotransport of magnetic semiconducting Fe\(_{1-x}\)Co\(_{x}\)Si alloy nanowires. Nano Lett. 8, 810–815 (2008)
44.
Zurück zum Zitat Schmitt, A.L., Jin, S.: Selective patterned growth of silicide nanowires without the use of metal catalysts. Chem. Mater. 19, 126–128 (2006) Schmitt, A.L., Jin, S.: Selective patterned growth of silicide nanowires without the use of metal catalysts. Chem. Mater. 19, 126–128 (2006)
45.
Zurück zum Zitat Higgins, J.M., Carmichael, P., Schmitt, A.L., Lee, S., Degrave, J.P., Jin, S.: Mechanistic investigation of the growth of Fe\(_{1-x}\)Co\(_{x}\)Si (0 \(\le \) x \(\le \) 1) and Fe\(_{5}\)(Si\(_{1-y}\)Ge\(_{y})_{3}\) (0 \(\le \) y \(\le \) 0.33) ternary alloy nanowires. ACS Nano 5, 3268–3277 (2011) Higgins, J.M., Carmichael, P., Schmitt, A.L., Lee, S., Degrave, J.P., Jin, S.: Mechanistic investigation of the growth of Fe\(_{1-x}\)Co\(_{x}\)Si (0 \(\le \) x \(\le \) 1) and Fe\(_{5}\)(Si\(_{1-y}\)Ge\(_{y})_{3}\) (0 \(\le \) y \(\le \) 0.33) ternary alloy nanowires. ACS Nano 5, 3268–3277 (2011)
46.
Zurück zum Zitat Song, Y., Schmitt, A.L., Jin, S.: Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 7, 965–969 (2007) Song, Y., Schmitt, A.L., Jin, S.: Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett. 7, 965–969 (2007)
47.
Zurück zum Zitat Szczech, J.R., Schmitt, A.L., Bierman, M.J., Jin, S.: Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 19, 3238–3243 (2007) Szczech, J.R., Schmitt, A.L., Bierman, M.J., Jin, S.: Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem. Mater. 19, 3238–3243 (2007)
48.
Zurück zum Zitat Song, Y., Jin, S.: Synthesis and properties of single-crystal \(\beta _{3}\)-N\(_{3}\)Si nanowires. Appl. Phys. Lett. 90, 173122–173123 (2007) Song, Y., Jin, S.: Synthesis and properties of single-crystal \(\beta _{3}\)-N\(_{3}\)Si nanowires. Appl. Phys. Lett. 90, 173122–173123 (2007)
49.
Zurück zum Zitat Szczech, J.R., Jin, S.: Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 20, 1375–1382 (2010) Szczech, J.R., Jin, S.: Epitaxially-hyperbranched FeSi nanowires exhibiting merohedral twinning. J. Mater. Chem. 20, 1375–1382 (2010)
50.
Zurück zum Zitat Seo, K., Varadwaj, K.S.K., Mohanty, P., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 7, 1240–1245 (2007) Seo, K., Varadwaj, K.S.K., Mohanty, P., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Magnetic properties of single-crystalline CoSi nanowires. Nano Lett. 7, 1240–1245 (2007)
51.
Zurück zum Zitat Seo, K., Varadwaj, K.S.K., Cha, D., In, J., Kim, J., Park, J., Kim, B.: Synthesis and electrical properties of single crystalline CrSi\(_{2}\) nanowires. J. Phys. Chem. C 111, 9072–9076 (2007) Seo, K., Varadwaj, K.S.K., Cha, D., In, J., Kim, J., Park, J., Kim, B.: Synthesis and electrical properties of single crystalline CrSi\(_{2}\) nanowires. J. Phys. Chem. C 111, 9072–9076 (2007)
52.
Zurück zum Zitat Varadwaj, K.S.K., Seo, K., In, J., Mohanty, P., Park, J., Kim, B.: Phase-controlled growth of metastable Fe\(_{5}\)Si\(_{3}\) nanowires by a vapor transport method. J. Am. Chem. Soc. 129, 8594–8599 (2007) Varadwaj, K.S.K., Seo, K., In, J., Mohanty, P., Park, J., Kim, B.: Phase-controlled growth of metastable Fe\(_{5}\)Si\(_{3}\) nanowires by a vapor transport method. J. Am. Chem. Soc. 129, 8594–8599 (2007)
53.
Zurück zum Zitat Seo, K., Yoon, H., Ryu, S.W., Lee, S., Jo, Y., Jung, M.H., Kim, J., Choi, Y.K., Kim, B.: Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4, 2569–2576 (2010) Seo, K., Yoon, H., Ryu, S.W., Lee, S., Jo, Y., Jung, M.H., Kim, J., Choi, Y.K., Kim, B.: Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4, 2569–2576 (2010)
54.
Zurück zum Zitat Seo, K., Lee, S., Yoon, H., In, J., Varadwaj, K.S.K., Jo, Y., Jung, M.-H., Kim, J., Kim, B.: Composition-tuned Co\(_{n}\)Si nanowires: location-selective simultaneous growth along temperature gradient. ACS Nano 3, 1145–1150 (2009) Seo, K., Lee, S., Yoon, H., In, J., Varadwaj, K.S.K., Jo, Y., Jung, M.-H., Kim, J., Kim, B.: Composition-tuned Co\(_{n}\)Si nanowires: location-selective simultaneous growth along temperature gradient. ACS Nano 3, 1145–1150 (2009)
55.
Zurück zum Zitat Zhang, Z., Wong, L.M., Ong, H.G., Wang, X.J., Wang, J.L., Wang, S.J., Chen, H., Wu, T.: Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu\(_{3}\)Si triangles, squares, and wires. Nano Lett. 8, 3205–3210 (2008) Zhang, Z., Wong, L.M., Ong, H.G., Wang, X.J., Wang, J.L., Wang, S.J., Chen, H., Wu, T.: Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu\(_{3}\)Si triangles, squares, and wires. Nano Lett. 8, 3205–3210 (2008)
56.
Zurück zum Zitat Lee, C.Y., Lu, M.P., Liao, K.F., Lee, W.F., Huang, C.T., Chen, S.Y., Chen, L.J.: Free-standing single-crystal NiSi\(_{2}\) nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C 113, 2286–2289 (2009) Lee, C.Y., Lu, M.P., Liao, K.F., Lee, W.F., Huang, C.T., Chen, S.Y., Chen, L.J.: Free-standing single-crystal NiSi\(_{2}\) nanowires with excellent electrical transport and field emission properties. J. Phys. Chem. C 113, 2286–2289 (2009)
57.
Zurück zum Zitat Wang, H., Wu, J.C., Shen, Y., Li, G., Zhang, Z., Xing, G., Guo, D., Wang, D., Dong, Z., Wu, T.: CrSi\(_{2}\) hexagonal nanowebs. J. Am. Chem. Soc. 132, 15875–15877 (2010) Wang, H., Wu, J.C., Shen, Y., Li, G., Zhang, Z., Xing, G., Guo, D., Wang, D., Dong, Z., Wu, T.: CrSi\(_{2}\) hexagonal nanowebs. J. Am. Chem. Soc. 132, 15875–15877 (2010)
58.
Zurück zum Zitat In, J., Varadwaj, K.S.K., Seo, K., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Single-crystalline ferromagnetic Fe\(_{1-x}\)Co\(_{x}\)Si nanowires. J. Phys. Chem. C 112, 4748–4752 (2008) In, J., Varadwaj, K.S.K., Seo, K., Lee, S., Jo, Y., Jung, M.H., Kim, J., Kim, B.: Single-crystalline ferromagnetic Fe\(_{1-x}\)Co\(_{x}\)Si nanowires. J. Phys. Chem. C 112, 4748–4752 (2008)
59.
Zurück zum Zitat Li, C.P., Wang, N., Wong, S.P., Lee, C.S., Lee, S.T.: Metal silicide/silicon nanowires from metal vapor vacuum arc implantation. Adv. Mater. 14, 218–221 (2002) Li, C.P., Wang, N., Wong, S.P., Lee, C.S., Lee, S.T.: Metal silicide/silicon nanowires from metal vapor vacuum arc implantation. Adv. Mater. 14, 218–221 (2002)
60.
Zurück zum Zitat Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004) Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61–65 (2004)
61.
Zurück zum Zitat Liu, B., Wang, Y., Dilts, S., Mayer, T.S., Mohney, S.E.: Silicidation of silicon nanowires by platinum. Nano Lett. 7, 818–824 (2007) Liu, B., Wang, Y., Dilts, S., Mayer, T.S., Mohney, S.E.: Silicidation of silicon nanowires by platinum. Nano Lett. 7, 818–824 (2007)
62.
Zurück zum Zitat Lu, K.C., Tu, K.N., Wu, W.W., Chen, L.J., Yoo, B.Y., Myung, N.V.: Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett. 90, 253111–253113 (2007) Lu, K.C., Tu, K.N., Wu, W.W., Chen, L.J., Yoo, B.Y., Myung, N.V.: Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si. Appl. Phys. Lett. 90, 253111–253113 (2007)
63.
Zurück zum Zitat Lu, K.C., Wu, W.-W., Wu, H.-W., Tanner, C.M., Chang, J.P., Chen, L.J., Tu, K.N.: In situ Control of atomic-scale si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7, 2389–2394 (2007) Lu, K.C., Wu, W.-W., Wu, H.-W., Tanner, C.M., Chang, J.P., Chen, L.J., Tu, K.N.: In situ Control of atomic-scale si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 7, 2389–2394 (2007)
64.
Zurück zum Zitat Chou, Y.C., Wu, W.W., Cheng, S.L., Yoo, B.Y., Myung, N., Chen, L.J., Tu, K.N.: In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi\(_{2}\) in nanowires of Si. Nano Lett. 8, 2194–2199 (2008) Chou, Y.C., Wu, W.W., Cheng, S.L., Yoo, B.Y., Myung, N., Chen, L.J., Tu, K.N.: In-situ TEM observation of repeating events of nucleation in epitaxial growth of nano CoSi\(_{2}\) in nanowires of Si. Nano Lett. 8, 2194–2199 (2008)
65.
Zurück zum Zitat Weber, W.M., Geelhaar, L., Unger, E., Chèze, C., Kreupl, F., Riechert, H., Lugli, P.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi (b) 244 (2007) 4170–4175 Weber, W.M., Geelhaar, L., Unger, E., Chèze, C., Kreupl, F., Riechert, H., Lugli, P.: Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Status Solidi (b) 244 (2007) 4170–4175
66.
Zurück zum Zitat Lin, Y.C., Lu, K.C., Wu, W.W., Bai, J., Chen, L.J., Tu, K.N., Huang, Y.: Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8, 913–918 (2008) Lin, Y.C., Lu, K.C., Wu, W.W., Bai, J., Chen, L.J., Tu, K.N., Huang, Y.: Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices. Nano Lett. 8, 913–918 (2008)
67.
Zurück zum Zitat Lin, Y.C., Chen, Y., Xu, D., Huang, Y.: Growth of nickel silicides in Si and Si/SiO\(_{x}\) core/shell nanowires. Nano Lett. 10, 4721–4726 (2010) Lin, Y.C., Chen, Y., Xu, D., Huang, Y.: Growth of nickel silicides in Si and Si/SiO\(_{x}\) core/shell nanowires. Nano Lett. 10, 4721–4726 (2010)
68.
Zurück zum Zitat Liu, H.L., She, G.W., Ling, S.T., Mu, L.X., Shi, W.S.: Ferromagnetic Si/Mn\(_{27}\)Si\(_{47}\)core/shell nanowire arrays. J. Appl. Phys. 109, 4 (2011) Liu, H.L., She, G.W., Ling, S.T., Mu, L.X., Shi, W.S.: Ferromagnetic Si/Mn\(_{27}\)Si\(_{47}\)core/shell nanowire arrays. J. Appl. Phys. 109, 4 (2011)
69.
Zurück zum Zitat Liu, H., She, G., Mu, L., Shi, W.: Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation. Mater. Res. Bull. 47, 3991–3994 (2012) Liu, H., She, G., Mu, L., Shi, W.: Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation. Mater. Res. Bull. 47, 3991–3994 (2012)
70.
Zurück zum Zitat Chen, Y., Ohlberg, D.A.A., Medeiros-Ribeiro, G., Chang, Y.A., Williams, R.S.: Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl. Phys. Lett. 76, 4004–4006 (2000) Chen, Y., Ohlberg, D.A.A., Medeiros-Ribeiro, G., Chang, Y.A., Williams, R.S.: Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl. Phys. Lett. 76, 4004–4006 (2000)
71.
Zurück zum Zitat Chen, Y., Ohlberg, D.A.A., Williams, R.S.: Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 91, 3213–3218 (2002) Chen, Y., Ohlberg, D.A.A., Williams, R.S.: Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 91, 3213–3218 (2002)
72.
Zurück zum Zitat Zou, Z.Q., Wang, H., Wang, D., Wang, Q.K., Mao, J.J., Kong, X.Y.: Epitaxial growth of manganese silicide nanowires on Si(111)-7 x 7 surfaces. Appl. Phys. Lett. 90, 133111–133113 (2007) Zou, Z.Q., Wang, H., Wang, D., Wang, Q.K., Mao, J.J., Kong, X.Y.: Epitaxial growth of manganese silicide nanowires on Si(111)-7 x 7 surfaces. Appl. Phys. Lett. 90, 133111–133113 (2007)
73.
Zurück zum Zitat Dan, W., Zhi-Qiang, Z.: Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Nanotechnology 20, 275607 (2009) Dan, W., Zhi-Qiang, Z.: Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Nanotechnology 20, 275607 (2009)
74.
Zurück zum Zitat Zou, Z.Q., Li, W.C., Liang, J.M., Wang, D.: Self-organized growth of higher manganese silicide nanowires on Si(111), (110) and (001) surfaces. Acta Mater. 59, 7473–7479 (2011) Zou, Z.Q., Li, W.C., Liang, J.M., Wang, D.: Self-organized growth of higher manganese silicide nanowires on Si(111), (110) and (001) surfaces. Acta Mater. 59, 7473–7479 (2011)
75.
Zurück zum Zitat Bennett, P.A., He, Z., Smith, D.J., Ross, F.M.: Endotaxial silicide nanowires: a review. Thin Solid Films 519, 8434–8440 (2011) Bennett, P.A., He, Z., Smith, D.J., Ross, F.M.: Endotaxial silicide nanowires: a review. Thin Solid Films 519, 8434–8440 (2011)
76.
Zurück zum Zitat He, Z., Stevens, M., Smith, D.J., Bennett, P.A.: Epitaxial titanium silicide islands and nanowires. Surf. Sci. 524, 148–156 (2003) He, Z., Stevens, M., Smith, D.J., Bennett, P.A.: Epitaxial titanium silicide islands and nanowires. Surf. Sci. 524, 148–156 (2003)
77.
Zurück zum Zitat Stevens, M., He, Z., Smith, D.J., Bennett, P.A.: Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction. J. Appl. Phys. 93, 5670–5674 (2003) Stevens, M., He, Z., Smith, D.J., Bennett, P.A.: Structure and orientation of epitaxial titanium silicide nanowires determined by electron microdiffraction. J. Appl. Phys. 93, 5670–5674 (2003)
78.
Zurück zum Zitat He, Z., Smith, D.J., Bennett, P.A.: Endotaxial silicide nanowires. Phys. Rev. Lett. 93, 256102 (2004) He, Z., Smith, D.J., Bennett, P.A.: Endotaxial silicide nanowires. Phys. Rev. Lett. 93, 256102 (2004)
79.
Zurück zum Zitat Bennett, P.A., Ashcroft, B., He, Z., Tromp, R.M.: Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy, in AVS, Albuquerque, New Mexico, USA, pp. 2500–2504 (2002) Bennett, P.A., Ashcroft, B., He, Z., Tromp, R.M.: Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy, in AVS, Albuquerque, New Mexico, USA, pp. 2500–2504 (2002)
80.
Zurück zum Zitat Chen, S.Y., Chen, L.J.: Nitride-mediated epitaxy of self-assembled NiSi\(_{2}\) nanowires on (001)Si. Appl. Phys. Lett. 87, 253111–253113 (2005) Chen, S.Y., Chen, L.J.: Nitride-mediated epitaxy of self-assembled NiSi\(_{2}\) nanowires on (001)Si. Appl. Phys. Lett. 87, 253111–253113 (2005)
81.
Zurück zum Zitat Chen, S.Y., Chen, H.C., Chen, L.J.: Self-assembled endotaxial alpha-FeSi\(_{2}\) nanowires with length tunability mediated by a thin nitride layer on (001)Si. Appl. Phys. Lett. 88, 193114–193113 (2006) Chen, S.Y., Chen, H.C., Chen, L.J.: Self-assembled endotaxial alpha-FeSi\(_{2}\) nanowires with length tunability mediated by a thin nitride layer on (001)Si. Appl. Phys. Lett. 88, 193114–193113 (2006)
82.
Zurück zum Zitat Chen, S.Y., Chen, L.J.: Self-assembled epitaxial NiSi\(_{2}\) nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 508, 222–225 (2006) Chen, S.Y., Chen, L.J.: Self-assembled epitaxial NiSi\(_{2}\) nanowires on Si(001) by reactive deposition epitaxy. Thin Solid Films 508, 222–225 (2006)
83.
Zurück zum Zitat Liang, S., Islam, R., Smith, D.J., Bennett, P.A.: Phase transformation in FeSi2 nanowires. J. Cryst. Growth 295, 166–171 (2006) Liang, S., Islam, R., Smith, D.J., Bennett, P.A.: Phase transformation in FeSi2 nanowires. J. Cryst. Growth 295, 166–171 (2006)
84.
Zurück zum Zitat Peng, Z.L., Liang, S., Deng, L.G.: Transition metal silicide nanowires growth and electrical characterization. Chin. Phys. Lett. 26, 127301 (2009) Peng, Z.L., Liang, S., Deng, L.G.: Transition metal silicide nanowires growth and electrical characterization. Chin. Phys. Lett. 26, 127301 (2009)
85.
Zurück zum Zitat Ma, J., Gu, Y., Shi, L., Chen, L., Yang, Z., Qian, Y.: Synthesis and oxidation behavior of chromium silicide (Cr\(_{3}\)Si) nanorods. J. Alloy. Compd. 375, 249–252 (2004) Ma, J., Gu, Y., Shi, L., Chen, L., Yang, Z., Qian, Y.: Synthesis and oxidation behavior of chromium silicide (Cr\(_{3}\)Si) nanorods. J. Alloy. Compd. 375, 249–252 (2004)
86.
Zurück zum Zitat Kim, J., Anderson, W.A.: Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films 483, 60–65 (2005) Kim, J., Anderson, W.A.: Spontaneous nickel monosilicide nanowire formation by metal induced growth. Thin Solid Films 483, 60–65 (2005)
87.
Zurück zum Zitat Kim, J., Anderson, W.A., Song, Y.J., Kim, G.B.: Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 86, 253101–253103 (2005) Kim, J., Anderson, W.A., Song, Y.J., Kim, G.B.: Self-assembled nanobridge formation and spontaneous growth of metal-induced nanowires. Appl. Phys. Lett. 86, 253101–253103 (2005)
88.
Zurück zum Zitat Tanaka, M., Chu, F., Shimojo, M., Takeguchi, M., Mitsuishi, K., Furuya, K.: Position- and size-controlled fabrication of iron silicide nanorods by electron-beam-induced deposition using an ultrahigh-vacuum transmission electron microscope. Appl. Phys. Lett. 86, 183104–183103 (2005) Tanaka, M., Chu, F., Shimojo, M., Takeguchi, M., Mitsuishi, K., Furuya, K.: Position- and size-controlled fabrication of iron silicide nanorods by electron-beam-induced deposition using an ultrahigh-vacuum transmission electron microscope. Appl. Phys. Lett. 86, 183104–183103 (2005)
89.
Zurück zum Zitat Zhang, Z., Hellström, P.-E., Lu, J., Östling, M., Zhang, S.-L.: A novel self-aligned process for platinum silicide nanowires. Microelectron. Eng. 83, 2107–2111 (2006) Zhang, Z., Hellström, P.-E., Lu, J., Östling, M., Zhang, S.-L.: A novel self-aligned process for platinum silicide nanowires. Microelectron. Eng. 83, 2107–2111 (2006)
90.
Zurück zum Zitat Geng, Z.R., Lu, Q.H., Yan, P.X., Yan, D., Yue, G.H.: Efficient preparation of NiSi nanowires by DC arc-discharge. Phys. E 41, 185–188 (2008) Geng, Z.R., Lu, Q.H., Yan, P.X., Yan, D., Yue, G.H.: Efficient preparation of NiSi nanowires by DC arc-discharge. Phys. E 41, 185–188 (2008)
91.
Zurück zum Zitat Gao, Y., Shao, G., Chen, R.S., Chong, Y.T., Li, Q.: TEM study of self-assembled FeSi\(_{2}\) nanostructures by ion beam implantation. Solid State Commun. 149, 97–100 (2009) Gao, Y., Shao, G., Chen, R.S., Chong, Y.T., Li, Q.: TEM study of self-assembled FeSi\(_{2}\) nanostructures by ion beam implantation. Solid State Commun. 149, 97–100 (2009)
92.
Zurück zum Zitat He, Y., Fan, J., Zhao, Y.: Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique. Crystal Growth Des. 10, 4954–4958 (2010) He, Y., Fan, J., Zhao, Y.: Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique. Crystal Growth Des. 10, 4954–4958 (2010)
93.
Zurück zum Zitat He, Y., Brown, C., Lundgren, C.A., Zhao, Y.: The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties. Nanotechnology 23, 365703 (2012) He, Y., Brown, C., Lundgren, C.A., Zhao, Y.: The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties. Nanotechnology 23, 365703 (2012)
94.
Zurück zum Zitat Seo, K., Bagkar, N., Kim, S.-i., In, J., Yoon, H., Jo, Y., Kim, B.: Diffusion-driven crystal structure transformation: synthesis of heusler alloy Fe3Si nanowires. Nano Lett. 10, 3643–3647 (2010) Seo, K., Bagkar, N., Kim, S.-i., In, J., Yoon, H., Jo, Y., Kim, B.: Diffusion-driven crystal structure transformation: synthesis of heusler alloy Fe3Si nanowires. Nano Lett. 10, 3643–3647 (2010)
95.
Zurück zum Zitat Jung, S.J., Lutz, T., Bell, A.P., McCarthy, E.K., Boland, J.J.: Free-standing, single-crystal Cu\(_{3}\)Si nanowires. Crystal Growth Des. 12, 3076–3081 (2012) Jung, S.J., Lutz, T., Bell, A.P., McCarthy, E.K., Boland, J.J.: Free-standing, single-crystal Cu\(_{3}\)Si nanowires. Crystal Growth Des. 12, 3076–3081 (2012)
96.
Zurück zum Zitat Eberhardt, J., Kasper, E.: Ni/Ag metallization for SiGe HBTs using a Ni silicide contact. Semicond. Sci. Technol. 16, L47 (2001) Eberhardt, J., Kasper, E.: Ni/Ag metallization for SiGe HBTs using a Ni silicide contact. Semicond. Sci. Technol. 16, L47 (2001)
97.
Zurück zum Zitat Kim, J., Shin, D.H., Lee, E.S., Han, C.S., Park, Y.C.: Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 90, 253103–253103 (2007) Kim, J., Shin, D.H., Lee, E.S., Han, C.S., Park, Y.C.: Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 90, 253103–253103 (2007)
98.
Zurück zum Zitat Paschen, S., Felder, E., Chernikov, M.A., Degiorgi, L., Schwer, H., Ott, H.R., Young, D.P., Sarrao, J.L., Fisk, Z.: Low-temperature transport, thermodynamic, and optical properties of FeSi. Phys. Rev. B 56, 12916–12930 (1997) Paschen, S., Felder, E., Chernikov, M.A., Degiorgi, L., Schwer, H., Ott, H.R., Young, D.P., Sarrao, J.L., Fisk, Z.: Low-temperature transport, thermodynamic, and optical properties of FeSi. Phys. Rev. B 56, 12916–12930 (1997)
99.
Zurück zum Zitat Aeppli, G., DiTusa, J.F.: Undoped and doped FeSi or how to make a heavy fermion metal with three of the most common elements. Mater. Sci. Eng. B 63, 119–124 (1999) Aeppli, G., DiTusa, J.F.: Undoped and doped FeSi or how to make a heavy fermion metal with three of the most common elements. Mater. Sci. Eng. B 63, 119–124 (1999)
100.
Zurück zum Zitat Hung, S.W., Yeh, P.H., Chu, L.W., Chen, C.D., Chou, L.J., Wu, Y.J., Chen, L.J.: Direct growth of \(\beta \)-FeSi\(_{2}\) nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method. J. Mater. Chem. 21, 5704–5709 (2011) Hung, S.W., Yeh, P.H., Chu, L.W., Chen, C.D., Chou, L.J., Wu, Y.J., Chen, L.J.: Direct growth of \(\beta \)-FeSi\(_{2}\) nanowires with infrared emission, ferromagnetism at room temperature and high magnetoresistance via a spontaneous chemical reaction method. J. Mater. Chem. 21, 5704–5709 (2011)
101.
Zurück zum Zitat Kang, S., Brewer, G., Sapkota, K.R., Pegg, I.L., Philip, J.: Electrical and magnetic properties of higher manganese silicide nanostructures. IEEE Trans. Nanotechnol. 11, 437–440 (2012) Kang, S., Brewer, G., Sapkota, K.R., Pegg, I.L., Philip, J.: Electrical and magnetic properties of higher manganese silicide nanostructures. IEEE Trans. Nanotechnol. 11, 437–440 (2012)
102.
Zurück zum Zitat Kim, J.J., Shindo, D., Murakami, Y., Xia, W., Chou, L.J., Chueh, Y.L.: Direct observation of field emission in a single TaSi\(_{2}\) nanowire. Nano Lett. 7, 2243–2247 (2007) Kim, J.J., Shindo, D., Murakami, Y., Xia, W., Chou, L.J., Chueh, Y.L.: Direct observation of field emission in a single TaSi\(_{2}\) nanowire. Nano Lett. 7, 2243–2247 (2007)
103.
Zurück zum Zitat Kim, J., Lee, E.S., Han, C.S., Kang, Y., Kim, D., Anderson, W.A.: Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectron. Eng. 85, 1709–1712 (2008) Kim, J., Lee, E.S., Han, C.S., Kang, Y., Kim, D., Anderson, W.A.: Observation of Ni silicide formations and field emission properties of Ni silicide nanowires. Microelectron. Eng. 85, 1709–1712 (2008)
104.
Zurück zum Zitat Liang, S., Islam, R., Smith, D.J., Bennett, P.A., O’Brien, J.R., Taylor, B.: Magnetic iron silicide nanowires on Si(110). Appl. Phys. Lett. 88, 113111–113113 (2006) Liang, S., Islam, R., Smith, D.J., Bennett, P.A., O’Brien, J.R., Taylor, B.: Magnetic iron silicide nanowires on Si(110). Appl. Phys. Lett. 88, 113111–113113 (2006)
105.
Zurück zum Zitat Kim, T., Bird, J.P.: Electrical signatures of ferromagnetism in epitaxial FeSi[sub 2] nanowires. Appl. Phys. Lett. 97, 263111–263113 (2010) Kim, T., Bird, J.P.: Electrical signatures of ferromagnetism in epitaxial FeSi[sub 2] nanowires. Appl. Phys. Lett. 97, 263111–263113 (2010)
106.
Zurück zum Zitat Gottlieb, U., Sulpice, A., Lambert-Andron, B., Laborde, O.: Magnetic properties of single crystalline Mn\(_{4}\)Si\(_{7}\). J. Alloy. Compd. 361, 13–18 (2003) Gottlieb, U., Sulpice, A., Lambert-Andron, B., Laborde, O.: Magnetic properties of single crystalline Mn\(_{4}\)Si\(_{7}\). J. Alloy. Compd. 361, 13–18 (2003)
107.
Zurück zum Zitat Hou, T.C., Han, Y.H., Lo, S.C., Lee, C.T., Ouyang, H., Chen, L.J.: Room-temperature ferromagnetism in CrSi\(_{2}\)(core)/SiO\(_{2}\)(shell) semiconducting nanocables. Appl. Phys. Lett. 98, 193104–193103 (2011) Hou, T.C., Han, Y.H., Lo, S.C., Lee, C.T., Ouyang, H., Chen, L.J.: Room-temperature ferromagnetism in CrSi\(_{2}\)(core)/SiO\(_{2}\)(shell) semiconducting nanocables. Appl. Phys. Lett. 98, 193104–193103 (2011)
108.
Zurück zum Zitat DeGrave, J.P., Schmitt, A.L., Selinsky, R.S., Higgins, J.M., Keavney, D.J., Jin, S.: spin polarization measurement of homogeneously doped Fe\(_{1-x}\)Co\(_{x}\)Si nanowires by andreev reflection spectroscopy. Nano Lett. 11, 4431–4437 (2011) DeGrave, J.P., Schmitt, A.L., Selinsky, R.S., Higgins, J.M., Keavney, D.J., Jin, S.: spin polarization measurement of homogeneously doped Fe\(_{1-x}\)Co\(_{x}\)Si nanowires by andreev reflection spectroscopy. Nano Lett. 11, 4431–4437 (2011)
109.
Zurück zum Zitat Zhou, F., Szczech, J., Pettes, M.T., Moore, A.L., Jin, S., Shi, L.: Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Lett. 7, 1649–1654 (2007) Zhou, F., Szczech, J., Pettes, M.T., Moore, A.L., Jin, S., Shi, L.: Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations. Nano Lett. 7, 1649–1654 (2007)
110.
Zurück zum Zitat Zou, C., Jing, G., Yu, D., Xue, Y., Duan, H.: Mechanical properties of TiSi\(_{2}\) nanowires. Phys. Lett. A 373, 2065–2070 (2009) Zou, C., Jing, G., Yu, D., Xue, Y., Duan, H.: Mechanical properties of TiSi\(_{2}\) nanowires. Phys. Lett. A 373, 2065–2070 (2009)
111.
Zurück zum Zitat Weber, W.M., Geelhaar, L., Graham, A.P., Unger, E., Duesberg, G.S., Liebau, M., Pamler, W., Chèze, C., Riechert, H., Lugli, P., Kreupl, F.: Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 6, 2660–2666 (2006) Weber, W.M., Geelhaar, L., Graham, A.P., Unger, E., Duesberg, G.S., Liebau, M., Pamler, W., Chèze, C., Riechert, H., Lugli, P., Kreupl, F.: Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 6, 2660–2666 (2006)
112.
Zurück zum Zitat Wang, W., Ari, A.M., Wong, W.K.: Ieee, On-chip interconnects and repeaters based on NiSi nanowires. Ieee, New York (2006) Wang, W., Ari, A.M., Wong, W.K.: Ieee, On-chip interconnects and repeaters based on NiSi nanowires. Ieee, New York (2006)
113.
Zurück zum Zitat Maex, K., De Keersmaecker, R.F., Ghosh, G., Delaey, L., Probst, V.: Degradation of doped Si regions contacted with transition-metal silicides due to metal-dopant compound formation. J. Appl. Phys. 66, 5327–5334 (1989) Maex, K., De Keersmaecker, R.F., Ghosh, G., Delaey, L., Probst, V.: Degradation of doped Si regions contacted with transition-metal silicides due to metal-dopant compound formation. J. Appl. Phys. 66, 5327–5334 (1989)
114.
Zurück zum Zitat Hua, Q., Du, N., Zhang, H., Liu, Z., Wang, L., Yang, D.: Direct growth of Ni\(_{2}\)Si nanowire array electrodes for high-performance reversible lithium-ion batteries. J. Mater. Sci. Eng. 28, 645 (2010) Hua, Q., Du, N., Zhang, H., Liu, Z., Wang, L., Yang, D.: Direct growth of Ni\(_{2}\)Si nanowire array electrodes for high-performance reversible lithium-ion batteries. J. Mater. Sci. Eng. 28, 645 (2010)
115.
Zurück zum Zitat Zhou, S., Wang, D.: Unique lithiation and delithiation processes of nanostructured metal silicides. ACS Nano 4, 7014–7020 (2010) Zhou, S., Wang, D.: Unique lithiation and delithiation processes of nanostructured metal silicides. ACS Nano 4, 7014–7020 (2010)
116.
Zurück zum Zitat Zhou, S., Simpson, Z.I., Yang, X., Wang, D.: Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction. ACS Nano 6, 8114–8119 (2012) Zhou, S., Simpson, Z.I., Yang, X., Wang, D.: Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction. ACS Nano 6, 8114–8119 (2012)
117.
Zurück zum Zitat Kang, K., Song, K., Heo, H., Yoo, S., Kim, G.-S., Lee, G., Kang, Y.-M., Jo, M.-H.: Kinetics-driven high power Li-ion battery with a-Si/NiSi\(_{x}\) core-shell nanowire anodes. Chem. Sci. 2, 1090–1093 (2011) Kang, K., Song, K., Heo, H., Yoo, S., Kim, G.-S., Lee, G., Kang, Y.-M., Jo, M.-H.: Kinetics-driven high power Li-ion battery with a-Si/NiSi\(_{x}\) core-shell nanowire anodes. Chem. Sci. 2, 1090–1093 (2011)
118.
Zurück zum Zitat Qi, Y., Du, N., Zhang, H., Fan, X., Yang, Y., Yang, D.: CoO/NiSi\(_{x}\) core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 4, 991–996 (2012) Qi, Y., Du, N., Zhang, H., Fan, X., Yang, Y., Yang, D.: CoO/NiSi\(_{x}\) core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 4, 991–996 (2012)
119.
Zurück zum Zitat Xie, J., Yang, X., Zhou, S., Wang, D.: Comparing one- and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. ACS Nano 5, 9225–9231 (2011) Xie, J., Yang, X., Zhou, S., Wang, D.: Comparing one- and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. ACS Nano 5, 9225–9231 (2011)
120.
Zurück zum Zitat Zhou, S., Yang, X., Lin, Y., Xie, J., Wang, D.: A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6, 919–924 (2011) Zhou, S., Yang, X., Lin, Y., Xie, J., Wang, D.: A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6, 919–924 (2011)
121.
Zurück zum Zitat Lin, Y., Zhou, S., Liu, X., Sheehan, S., Wang, D.: TiO\(_{2}\)/TiSi\(_{2}\) heterostructures for high-efficiency photoelectrochemical H\(_{2}\)O splitting. J. Am. Chem. Soc. 131, 2772–2773 (2009) Lin, Y., Zhou, S., Liu, X., Sheehan, S., Wang, D.: TiO\(_{2}\)/TiSi\(_{2}\) heterostructures for high-efficiency photoelectrochemical H\(_{2}\)O splitting. J. Am. Chem. Soc. 131, 2772–2773 (2009)
122.
Zurück zum Zitat Banerjee, S., Mohapatra, S.K., Misra, M.: Water photooxidation by TiSi\(_{2}\)-TiO\(_{2}\) nanotubes. J. Phys. Chem. C 115, 12643–12649 (2011) Banerjee, S., Mohapatra, S.K., Misra, M.: Water photooxidation by TiSi\(_{2}\)-TiO\(_{2}\) nanotubes. J. Phys. Chem. C 115, 12643–12649 (2011)
123.
Zurück zum Zitat Hung, S.W., Wang, T.T.J., Chu, L.W., Chen, L.J.: Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices. J. Phys. Chem. C 115, 15592–15597 (2011) Hung, S.W., Wang, T.T.J., Chu, L.W., Chen, L.J.: Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices. J. Phys. Chem. C 115, 15592–15597 (2011)
124.
Zurück zum Zitat Kim, D.J., Seol, J.K., Lee, M.R., Hyung, J.H., Kim, G.S., Ohgai, T., Lee, S.K.: Ferromagnetic nickel silicide nanowires for isolating primary CD4\(^{+}\) T lymphocytes. Appl. Phys. Lett. 100, 163703–163704 (2012) Kim, D.J., Seol, J.K., Lee, M.R., Hyung, J.H., Kim, G.S., Ohgai, T., Lee, S.K.: Ferromagnetic nickel silicide nanowires for isolating primary CD4\(^{+}\) T lymphocytes. Appl. Phys. Lett. 100, 163703–163704 (2012)
Metadaten
Titel
Synthesis, Properties, and Applications of One-Dimensional Transition Metal Silicide Nanostructures
verfasst von
Guangwei She
Hailong Liu
Lixuan Mu
Wensheng Shi
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-8169-0_12

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.