2015 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Graphene for Transparent Conductors
To develop large-area graphene-based TCFs, one of the foremost challenges is to produce sufficient amounts of high-quality graphene sheets. The techniques developed for synthesizing graphene including mechanical cleavage, epitaxial growth, chemical vapor deposition (CVD), total organic synthesis, and chemical method are compared. The electrical, thermal, optical, mechanical properties of graphene and graphene oxide, as well as the common tools for characterization of graphene and its derivatives are also discussed.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Konatham, D., & Striolo, A. (2008). Molecular design of stable graphene nanosheets dispersions. Nano Letters, 8, 4630–4641. Konatham, D., & Striolo, A. (2008). Molecular design of stable graphene nanosheets dispersions.
Nano Letters, 8, 4630–4641.
2.
Zurück zum Zitat Fernandez-Moran, H. (1960). Single crystals of graphite and mica as specimen support for electron microscopy. Journal of Applied Physics, 31, 1840. Fernandez-Moran, H. (1960). Single crystals of graphite and mica as specimen support for electron microscopy.
Journal of Applied Physics, 31, 1840.
3.
Zurück zum Zitat Boehm, H. P., Clauss., A., Hofmann, U, & Fischer, G. O. (1962). Dunnste, Kohlenstoff-Folien. Zeitschrift Fur Naturforschung Part B—Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete, B17, 150. Boehm, H. P., Clauss., A., Hofmann, U, & Fischer, G. O. (1962). Dunnste, Kohlenstoff-Folien.
Zeitschrift Fur Naturforschung Part B—Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete, B17, 150.
4.
Zurück zum Zitat Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48, 2127–2150. Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene.
Carbon, 48, 2127–2150.
5.
Zurück zum Zitat Ebbesen, T. W., & Hiura, H. (1995). Graphene in 3-dimensions—towards graphite origami. Advanced Materials, 7, 582–586. Ebbesen, T. W., & Hiura, H. (1995). Graphene in 3-dimensions—towards graphite origami.
Advanced Materials, 7, 582–586.
6.
Zurück zum Zitat Lu, X. K., Huang, H., Nemchuk, N., & Ruoff, R. S. (1999). Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters, 75, 193–195. Lu, X. K., Huang, H., Nemchuk, N., & Ruoff, R. S. (1999). Patterning of highly oriented pyrolytic graphite by oxygen plasma etching.
Applied Physics Letters, 75, 193–195.
7.
Zurück zum Zitat Lu, X. K., Yu, M. F., Huang, H., & Ruoff, R. S. (1999). Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269–272. Lu, X. K., Yu, M. F., Huang, H., & Ruoff, R. S. (1999). Tailoring graphite with the goal of achieving single sheets.
Nanotechnology, 10, 269–272.
8.
Zurück zum Zitat Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films.
Science, 306, 666–669.
9.
Zurück zum Zitat Berger, C., Song, Z. M., Li, T. B., Li, X. B., Ogbazghi, A. Y., Feng, R., Dai, Z. T., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 108, 19912–19916. Berger, C., Song, Z. M., Li, T. B., Li, X. B., Ogbazghi, A. Y., Feng, R., Dai, Z. T., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics.
Journal of Physical Chemistry B, 108, 19912–19916.
10.
Zurück zum Zitat Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312–1314. Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils.
Science, 324, 1312–1314.
11.
Zurück zum Zitat Meitl, M. A., Zhu, Z. T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo, R. G., Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5, 33–38. Meitl, M. A., Zhu, Z. T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo, R. G., Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an elastomeric stamp.
Nature Materials, 5, 33–38.
12.
Zurück zum Zitat Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
Nano Letters, 9, 30–35.
13.
Zurück zum Zitat Ruoff, R. (2008). Graphene: Calling all chemists. Nature Nanotechnology, 3, 10–11. Ruoff, R. (2008). Graphene: Calling all chemists.
Nature Nanotechnology, 3, 10–11.
14.
Zurück zum Zitat Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56, 1178–1271. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future.
Progress in Materials Science, 56, 1178–1271.
15.
Zurück zum Zitat Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247. Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films.
Progress in Materials Science, 64, 200–247.
16.
Zurück zum Zitat Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals.
Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.
17.
Zurück zum Zitat Sutter, P. W., Flege, J. I., Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7, 406–411. Sutter, P. W., Flege, J. I., Sutter, E. A. (2008). Epitaxial graphene on ruthenium.
Nature Materials, 7, 406–411.
18.
Zurück zum Zitat Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes.
Nature, 457, 706–710.
19.
Zurück zum Zitat Yang, X. Y., Dou, X., Rouhanipour, A., Zhi, L. J., Rader, H. J., & Mullen, K. (2008). Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216–4217. Yang, X. Y., Dou, X., Rouhanipour, A., Zhi, L. J., Rader, H. J., & Mullen, K. (2008). Two-dimensional graphene nanoribbons.
Journal of the American Chemical Society, 130, 4216–4217.
20.
Zurück zum Zitat Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide.
Carbon, 45, 1558–1565.
21.
Zurück zum Zitat Zhang, Y. B., Small, J. P., Pontius, W. V., & Kim, P. (2005). Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 86, 073104. Zhang, Y. B., Small, J. P., Pontius, W. V., & Kim, P. (2005). Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices.
Applied Physics Letters, 86, 073104.
22.
Zurück zum Zitat Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91, 063124. Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible.
Applied Physics Letters, 91, 063124.
23.
Zurück zum Zitat Gao, L. B., Ren, W. C., Li, F., & Cheng, H. M. (2008). Total color difference for rapid and accurate identification of graphene. ACS Nano, 2, 1625–1633. Gao, L. B., Ren, W. C., Li, F., & Cheng, H. M. (2008). Total color difference for rapid and accurate identification of graphene.
ACS Nano, 2, 1625–1633.
24.
Zurück zum Zitat Jung, I., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., Watcharotone, S., Hausner, M., & Ruoff, R. S. (2007). Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Letters, 7, 3569–3575. Jung, I., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., Watcharotone, S., Hausner, M., & Ruoff, R. S. (2007). Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.
Nano Letters, 7, 3569–3575.
25.
Zurück zum Zitat Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3, 206–209. Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2.
Nature Nanotechnology, 3, 206–209.
26.
Zurück zum Zitat Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., Naud, C., Mayou, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191–1196. Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., Naud, C., Mayou, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene.
Science, 312, 1191–1196.
27.
Zurück zum Zitat de Heer, W. A., Berger, C., Wu, X. S., First, P. N., Conrad, E. H., Li, X. B., Li, T. B., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143, 92–100. de Heer, W. A., Berger, C., Wu, X. S., First, P. N., Conrad, E. H., Li, X. B., Li, T. B., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene.
Solid State Communications, 143, 92–100.
28.
Zurück zum Zitat Hass, J., de Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene. Journal of Physics-Condensed Matter, 20, 323202. Hass, J., de Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene.
Journal of Physics-Condensed Matter, 20, 323202.
29.
Zurück zum Zitat Kedzierski, J., Hsu, P. L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C., & de Heer, W. A. (2008). Epitaxial graphene transistors on SIC substrates. IEEE Transactions on Electron Devices, 55, 2078–2085. Kedzierski, J., Hsu, P. L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C., & de Heer, W. A. (2008). Epitaxial graphene transistors on SIC substrates.
IEEE Transactions on Electron Devices, 55, 2078–2085.
30.
Zurück zum Zitat Tedesco, J. L., Jernigan, G. G., Culbertson, J. C., Hite, J. K., Yang, Y., Daniels, K. M., Myers-Ward, R. L., Eddy, C. R., Robinson, J. A., Trumbull, K. A., Wetherington, M. T., Campbell, P. M., & Gaskill, D. K. (2010). Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Applied Physics Letters, 96, 222103. Tedesco, J. L., Jernigan, G. G., Culbertson, J. C., Hite, J. K., Yang, Y., Daniels, K. M., Myers-Ward, R. L., Eddy, C. R., Robinson, J. A., Trumbull, K. A., Wetherington, M. T., Campbell, P. M., & Gaskill, D. K. (2010). Morphology characterization of argon-mediated epitaxial graphene on C-face SiC.
Applied Physics Letters, 96, 222103.
31.
Zurück zum Zitat Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Rohrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., & Seyller, T. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8, 203–207. Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Rohrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., & Seyller, T. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide.
Nature Materials, 8, 203–207.
32.
Zurück zum Zitat de Parga, A. L. V., Calleja, F., Borca, B., Passeggi, M. C. G., Hinarejos, J. J., Guinea, F., & Miranda, R. (2008). Periodically rippled graphene: Growth and spatially resolved electronic structure. Physical Review Letters, 100, 056807. de Parga, A. L. V., Calleja, F., Borca, B., Passeggi, M. C. G., Hinarejos, J. J., Guinea, F., & Miranda, R. (2008). Periodically rippled graphene: Growth and spatially resolved electronic structure.
Physical Review Letters, 100, 056807.
33.
Zurück zum Zitat Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W. A., Lanzara, A., & Conrad, E. H. (2009). First direct observation of a nearly ideal graphene band structure. Physical Review Letters, 103, 226803. Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W. A., Lanzara, A., & Conrad, E. H. (2009). First direct observation of a nearly ideal graphene band structure.
Physical Review Letters, 103, 226803.
34.
Zurück zum Zitat Wang, L., Tian, L. H., Wei, G. D., Gao, F. M., Zheng, J. J., & Yang, W. Y. (2011). Epitaxial growth of graphene and their applications in devices. Journal of Inorganic Materials, 26, 1009–1019. Wang, L., Tian, L. H., Wei, G. D., Gao, F. M., Zheng, J. J., & Yang, W. Y. (2011). Epitaxial growth of graphene and their applications in devices.
Journal of Inorganic Materials, 26, 1009–1019.
35.
Zurück zum Zitat VanMil, B. L., Myers-Ward, R. L., Tedesco, J. L., Eddy, C. R., Jernigan, G. G., Culbertson, J. C., Campbell, P. M., McCrate, J. M., Kitt, S. A., & Gaskill, D. K. (2009). Graphene formation on SiC substrates. Silicon Carbide and Related Materials 2008, 615–617, 211–214. VanMil, B. L., Myers-Ward, R. L., Tedesco, J. L., Eddy, C. R., Jernigan, G. G., Culbertson, J. C., Campbell, P. M., McCrate, J. M., Kitt, S. A., & Gaskill, D. K. (2009). Graphene formation on SiC substrates.
Silicon Carbide and Related Materials 2008, 615–617, 211–214.
36.
Zurück zum Zitat Camara, N., Huntzinger, J. R., Rius, G., Tiberj, A., Mestres, N., Perez-Murano, F., Godignon, P., & Camassel, J. (2009). Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6 H-SiC. Physical Review B, 80, 125410. Camara, N., Huntzinger, J. R., Rius, G., Tiberj, A., Mestres, N., Perez-Murano, F., Godignon, P., & Camassel, J. (2009). Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6 H-SiC.
Physical Review B, 80, 125410.
37.
Zurück zum Zitat Camara, N., Rius, G., Huntzinger, J. R., Tiberj, A., Mestres, N., Godignon, P., & Camassel, J. (2008). Selective epitaxial growth of graphene on SiC. Applied Physics Letters, 93, 123503. Camara, N., Rius, G., Huntzinger, J. R., Tiberj, A., Mestres, N., Godignon, P., & Camassel, J. (2008). Selective epitaxial growth of graphene on SiC.
Applied Physics Letters, 93, 123503.
38.
Zurück zum Zitat Virojanadara, C., Syvajarvi, M., Yakimova, R., Johansson, L. I., Zakharov, A. A., & Balasubramanian, T. (2008). Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B, 78, 245403 Virojanadara, C., Syvajarvi, M., Yakimova, R., Johansson, L. I., Zakharov, A. A., & Balasubramanian, T. (2008). Homogeneous large-area graphene layer growth on 6 H-SiC(0001).
Physical Review B, 78, 245403
39.
Zurück zum Zitat Unarunotai, S., Murata, Y., Chialvo, C. E., Kim, H. S., MacLaren, S., Mason, N., Petrov, I., & Rogers, J. A. (2009). Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Applied Physics Letters, 95, 202101. Unarunotai, S., Murata, Y., Chialvo, C. E., Kim, H. S., MacLaren, S., Mason, N., Petrov, I., & Rogers, J. A. (2009). Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors.
Applied Physics Letters, 95, 202101.
40.
Zurück zum Zitat Moreau, E., Godey, S., Ferrer, F. J., Vignaud, D., Wallart, X., Avila, J., Asensio, M. C., Bournel, F., & Gallet, J. J. (2010). Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Applied Physics Letters, 97, 241907 Moreau, E., Godey, S., Ferrer, F. J., Vignaud, D., Wallart, X., Avila, J., Asensio, M. C., Bournel, F., & Gallet, J. J. (2010). Graphene growth by molecular beam epitaxy on the carbon-face of SiC.
Applied Physics Letters, 97, 241907
41.
Zurück zum Zitat Hibino, H., Mizuno, S., Kageshima, H., Nagase, M., & Yamaguchi, H. (2009). Stacking domains of epitaxial few-layer graphene on SiC(0001). Physical Review B, 80, 085406. Hibino, H., Mizuno, S., Kageshima, H., Nagase, M., & Yamaguchi, H. (2009). Stacking domains of epitaxial few-layer graphene on SiC(0001).
Physical Review B, 80, 085406.
42.
Zurück zum Zitat Prakash, G., Capano, M. A., Bolen, M. L., Zemlyanou, D., & Reifenberger, R. G. (2010). AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(000(1)over-bar). Carbon, 48, 2383–2393. Prakash, G., Capano, M. A., Bolen, M. L., Zemlyanou, D., & Reifenberger, R. G. (2010). AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(000(1)over-bar).
Carbon, 48, 2383–2393.
43.
Zurück zum Zitat Jernigan, G. G., VanMil, B. L., Tedesco, J. L., Tischler, J. G., Glaser, E. R., Davidson, A., Campbell, P. M., & Gaskill, D. K. (2009). Comparison of epitaxial graphene on Si-face and C-face 4 H SiC formed by ultrahigh vacuum and RF furnace production. Nano Letters, 9, 2605–2609. Jernigan, G. G., VanMil, B. L., Tedesco, J. L., Tischler, J. G., Glaser, E. R., Davidson, A., Campbell, P. M., & Gaskill, D. K. (2009). Comparison of epitaxial graphene on Si-face and C-face 4 H SiC formed by ultrahigh vacuum and RF furnace production.
Nano Letters, 9, 2605–2609.
44.
Zurück zum Zitat Ouerghi, A., Belkhou, R., Marangolo, M., Silly, M. G., El Moussaoui, S., Eddrief, M., Largeau, L., Portail, M., & Sirotti, F. (2010). Structural coherency of epitaxial graphene on 3 C-SiC(111) epilayers on Si(111). Applied Physics Letters, 97, 161905. Ouerghi, A., Belkhou, R., Marangolo, M., Silly, M. G., El Moussaoui, S., Eddrief, M., Largeau, L., Portail, M., & Sirotti, F. (2010). Structural coherency of epitaxial graphene on 3 C-SiC(111) epilayers on Si(111).
Applied Physics Letters, 97, 161905.
45.
Zurück zum Zitat Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes.
Nature Nanotechnology, 5, 574–578.
46.
Zurück zum Zitat Cai, W. W., Moore, A. L., Zhu, Y. W., Li, X. S., Chen, S. S., Shi, L., & Ruoff, R. S. (2010). Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 10, 1645–1651. Cai, W. W., Moore, A. L., Zhu, Y. W., Li, X. S., Chen, S. S., Shi, L., & Ruoff, R. S. (2010). Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition.
Nano Letters, 10, 1645–1651.
47.
Zurück zum Zitat Cai, W. W., Piner, R. D., Zhu, Y. W., Li, X. S., Tan, Z. B., Floresca, H. C., Yang, C. L., Lu, L., Kim, M. J., & Ruoff, R. S. (2009). Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2, 851–856. Cai, W. W., Piner, R. D., Zhu, Y. W., Li, X. S., Tan, Z. B., Floresca, H. C., Yang, C. L., Lu, L., Kim, M. J., & Ruoff, R. S. (2009). Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films.
Nano Research, 2, 851–856.
48.
Zurück zum Zitat Fallahazad, B., Hao, Y. F., Lee, K., Kim, S., Ruoff, R. S., & Tutuc, E. (2012). Quantum hall effect in bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Physical Review B, 85, 201408. Fallahazad, B., Hao, Y. F., Lee, K., Kim, S., Ruoff, R. S., & Tutuc, E. (2012). Quantum hall effect in bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition.
Physical Review B, 85, 201408.
49.
Zurück zum Zitat Li, X. S., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., & Ruoff, R. S. (2011). Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 133, 2816–2819. Li, X. S., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., & Ruoff, R. S. (2011). Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper.
Journal of the American Chemical Society, 133, 2816–2819.
50.
Zurück zum Zitat Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y. F., Ahmed, S., An, J. H., Swan, A. K., Goldberg, B. B., & Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5, 6916–6924. Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y. F., Ahmed, S., An, J. H., Swan, A. K., Goldberg, B. B., & Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
ACS Nano, 5, 6916–6924.
51.
Zurück zum Zitat Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews, 110, 132–145. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene.
Chemical Reviews, 110, 132–145.
52.
Zurück zum Zitat Chen, Z. P., Ren, W. C., Gao, L. B., Liu, B. L., Pei, S. F., & Cheng, H. M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428. Chen, Z. P., Ren, W. C., Gao, L. B., Liu, B. L., Pei, S. F., & Cheng, H. M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition.
Nature Materials, 10, 424–428.
53.
Zurück zum Zitat Banerjee B. C., Hirt, T. J., & Walker, P. L. (1961). Pyrolytic carbon formation from carbon suboxide. Nature, 192, 450–451. Banerjee B. C., Hirt, T. J., & Walker, P. L. (1961). Pyrolytic carbon formation from carbon suboxide.
Nature, 192, 450–451.
54.
Zurück zum Zitat Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324–3334. Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper.
Journal of Materials Chemistry, 21, 3324–3334.
55.
Zurück zum Zitat De Arco, L. G., Zhang, Y., Kumar, A., & Zhou, C. W. (2009). Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE T Nanotechnol, 8, 135–138. De Arco, L. G., Zhang, Y., Kumar, A., & Zhou, C. W. (2009). Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition.
IEEE T Nanotechnol, 8, 135–138.
56.
Zurück zum Zitat Reina, A., Thiele, S., Jia, X. T., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J. A., & Kong, J. (2009). Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research, 2, 509–516. Reina, A., Thiele, S., Jia, X. T., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J. A., & Kong, J. (2009). Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces.
Nano Research, 2, 509–516.
57.
Zurück zum Zitat Kwon, S. Y., Ciobanu, C. V., Petrova, V., Shenoy, V. B., Bareno, J., Gambin, V., Petrov, I., & Kodambaka, S. (2009). Growth of semiconducting graphene on palladium. Nano Letters, 9, 3985–3990. Kwon, S. Y., Ciobanu, C. V., Petrova, V., Shenoy, V. B., Bareno, J., Gambin, V., Petrov, I., & Kodambaka, S. (2009). Growth of semiconducting graphene on palladium.
Nano Letters, 9, 3985–3990.
58.
Zurück zum Zitat Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46, 2329–2339. Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications.
Accounts of Chemical Research, 46, 2329–2339.
59.
Zurück zum Zitat Cai, J. M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X. L., Mullen, K., & Fasel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470–473. Cai, J. M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X. L., Mullen, K., & Fasel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons.
Nature, 466, 470–473.
60.
Zurück zum Zitat Wissler, M. (2006). Graphite and carbon powders for electrochemical applications. Journal of Power Sources, 156, 142–150. Wissler, M. (2006). Graphite and carbon powders for electrochemical applications.
Journal of Power Sources, 156, 142–150.
61.
Zurück zum Zitat Chung, D. D. L. (2002). Review graphite. Journal of Materials Science, 37, 1475–1489. Chung, D. D. L. (2002). Review graphite.
Journal of Materials Science, 37, 1475–1489.
62.
Zurück zum Zitat Sasa, T., Takahash, Y., Mukaibo, T. (1971). Crystal structure of graphite bromine lamellar compounds. Carbon, 9, 407–416. Sasa, T., Takahash, Y., Mukaibo, T. (1971). Crystal structure of graphite bromine lamellar compounds.
Carbon, 9, 407–416.
63.
Zurück zum Zitat Shih, C. J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J. H., Ham, M. H., Jin, Z., Lin, S. C., Paulus, G. L. C., Reuel, N. F., Wang, Q. H., Blankschtein, D., & Strano, M. S. (2011). Bi- and trilayer graphene solutions. Nature Nanotechnology, 6, 439–445. Shih, C. J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J. H., Ham, M. H., Jin, Z., Lin, S. C., Paulus, G. L. C., Reuel, N. F., Wang, Q. H., Blankschtein, D., & Strano, M. S. (2011). Bi- and trilayer graphene solutions.
Nature Nanotechnology, 6, 439–445.
64.
Zurück zum Zitat Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22, 2392–2415. Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics.
Advanced Materials, 22, 2392–2415.
65.
Zurück zum Zitat Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide.
Chemical Society Reviews, 39, 228–240.
66.
Zurück zum Zitat Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., & Haddon, R. C. (2006). Solution properties of graphite and graphene. Journal of the American Chemical Society, 128, 7720–7721. Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., & Haddon, R. C. (2006). Solution properties of graphite and graphene.
Journal of the American Chemical Society, 128, 7720–7721.
67.
Zurück zum Zitat Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442, 282–286. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials.
Nature, 442, 282–286.
68.
Zurück zum Zitat Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342–3347. Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets.
Carbon, 44, 3342–3347.
69.
Zurück zum Zitat Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 110, 8535–8539. Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide.
Journal of Physical Chemistry B, 110, 8535–8539.
70.
Zurück zum Zitat Geng, Y., Wang, S. J., & Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336, 592–598. Geng, Y., Wang, S. J., & Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets.
Journal of Colloid and Interface Science, 336, 592–598.
71.
Zurück zum Zitat Stankovich, S., Piner, R. D., Chen, X. Q., Wu, N. Q., Nguyen, S. T., & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155–158. Stankovich, S., Piner, R. D., Chen, X. Q., Wu, N. Q., Nguyen, S. T., & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate).
Journal of Materials Chemistry, 16, 155–158.
72.
Zurück zum Zitat Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics. Nano Letters, 9, 814–818. Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics.
Nano Letters, 9, 814–818.
73.
Zurück zum Zitat Sun, X. M., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. J. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212. Sun, X. M., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. J. (2008). Nano-graphene oxide for cellular imaging and drug delivery.
Nano Research, 1, 203–212.
74.
Zurück zum Zitat Lerf, A., He, H. Y., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. Journal of Physical Chemistry B, 102, 4477–4482. Lerf, A., He, H. Y., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited.
Journal of Physical Chemistry B, 102, 4477–4482.
75.
Zurück zum Zitat Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564. Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents.
Langmuir, 24, 10560–10564.
76.
Zurück zum Zitat Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 5, 6039–6051. Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly.
ACS Nano, 5, 6039–6051.
77.
Zurück zum Zitat Jung, I., Dikin, D., Park, S., Cai, W., Mielke, S. L., & Ruoff, R. S. (2008). Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. Journal of Physical Chemistry C, 112, 20264–20268. Jung, I., Dikin, D., Park, S., Cai, W., Mielke, S. L., & Ruoff, R. S. (2008). Effect of water vapor on electrical properties of individual reduced graphene oxide sheets.
Journal of Physical Chemistry C, 112, 20264–20268.
78.
Zurück zum Zitat Jung, I., Dikin, D. A., Piner, R. D., & Ruoff, R. S. (2008). Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Letters, 8, 4283–4287. Jung, I., Dikin, D. A., Piner, R. D., & Ruoff, R. S. (2008). Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures.
Nano Letters, 8, 4283–4287.
79.
Zurück zum Zitat Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., Stankovich, S., Jung, I., Field, D. A., Ventrice, C. A., & Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47, 145–152. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., Stankovich, S., Jung, I., Field, D. A., Ventrice, C. A., & Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy.
Carbon, 47, 145–152.
80.
Zurück zum Zitat Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4, 25–29. Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene.
Nature Nanotechnology, 4, 25–29.
81.
Zurück zum Zitat Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Letters, 9, 1949–1955. Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors.
Nano Letters, 9, 1949–1955.
82.
Zurück zum Zitat Wang, G. X., Yang, J., Park, J., Gou, X. L., Wang, B., Liu, H., & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C, 112, 8192–8195. Wang, G. X., Yang, J., Park, J., Gou, X. L., Wang, B., Liu, H., & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets.
Journal of Physical Chemistry C, 112, 8192–8195.
83.
Zurück zum Zitat Pei, S. F., Zhao, J. P., Du, J. H., Ren, W. C., & Cheng, H. M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48, 4466–4474. Pei, S. F., Zhao, J. P., Du, J. H., Ren, W. C., & Cheng, H. M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids.
Carbon, 48, 4466–4474.
84.
Zurück zum Zitat Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1, 73. Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization.
Nature Communications, 1, 73.
85.
Zurück zum Zitat Muszynski, R., Seger, B., & Kamat, P. V. (2008). Decorating graphene sheets with gold nanoparticles. Journal of Physical Chemistry C, 112, 5263–5266. Muszynski, R., Seger, B., & Kamat, P. V. (2008). Decorating graphene sheets with gold nanoparticles.
Journal of Physical Chemistry C, 112, 5263–5266.
86.
Zurück zum Zitat Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano Letters, 8, 1679–1682. Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene.
Nano Letters, 8, 1679–1682.
87.
Zurück zum Zitat Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets.
Nature Nanotechnology, 3, 101–105.
88.
Zurück zum Zitat Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3, 301–306. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene.
ACS Nano, 3, 301–306.
89.
Zurück zum Zitat Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 22, 4467–4472. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide.
Advanced Materials, 22, 4467–4472.
90.
Zurück zum Zitat Wang, Y., Shi, Z. X., Fang, J. H., Xu, H. J., Ma, X. D., & Yin, J. (2011). Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. Journal of Materials Chemistry, 21, 505–512. Wang, Y., Shi, Z. X., Fang, J. H., Xu, H. J., Ma, X. D., & Yin, J. (2011). Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites.
Journal of Materials Chemistry, 21, 505–512.
91.
Zurück zum Zitat Wang, X. Q., Fulvio, P. F., Baker, G. A., Veith, G. M., Unocic, R. R., Mahurin, S. M., Chi, M. F., & Dai, S. (2010). Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications, 46, 4487–4489. Wang, X. Q., Fulvio, P. F., Baker, G. A., Veith, G. M., Unocic, R. R., Mahurin, S. M., Chi, M. F., & Dai, S. (2010). Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids.
Chemical Communications, 46, 4487–4489.
92.
Zurück zum Zitat Liu, W. W., & Wang, J. N. (2011). Direct exfoliation of graphene in organic solvents with addition of NaOH. Chemical Communications, 47, 6888–6890. Liu, W. W., & Wang, J. N. (2011). Direct exfoliation of graphene in organic solvents with addition of NaOH.
Chemical Communications, 47, 6888–6890.
93.
Zurück zum Zitat Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z. Y., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563–568. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z. Y., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite.
Nature Nanotechnology, 3, 563–568.
94.
Zurück zum Zitat Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542. Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films.
Nature Nanotechnology, 3, 538–542.
95.
Zurück zum Zitat Green, A. A., & Hersam, M. C. (2009). Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 9, 4031–4036. Green, A. A., & Hersam, M. C. (2009). Solution phase production of graphene with controlled thickness via density differentiation.
Nano Letters, 9, 4031–4036.
96.
Zurück zum Zitat Lee, J. H., Shin, D. W., Makotchenko, V. G., Nazarov, A. S., Fedorov, V. E., Kim, Y. H., Choi, J. Y., Kim, J. M., & Yoo, J. B. (2009). One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Advanced Materials, 21, 4383–4387. Lee, J. H., Shin, D. W., Makotchenko, V. G., Nazarov, A. S., Fedorov, V. E., Kim, Y. H., Choi, J. Y., Kim, J. M., & Yoo, J. B. (2009). One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets.
Advanced Materials, 21, 4383–4387.
97.
Zurück zum Zitat Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z. M., McGovern, I. T., Duesberg, G. S., & Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131, 3611–3620. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z. M., McGovern, I. T., Duesberg, G. S., & Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.
Journal of the American Chemical Society, 131, 3611–3620.
98.
Zurück zum Zitat Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19, 3680–3695. Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene.
Advanced Functional Materials, 19, 3680–3695.
99.
Zurück zum Zitat Khan, U., O’Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene. Small, 6, 864–871. Khan, U., O’Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene.
Small, 6, 864–871.
100.
Zurück zum Zitat Valles, C., Drummond, C., Saadaoui, H., Furtado, C. A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., & Penicaud, A. (2008). Solutions of negatively charged graphene sheets and ribbons. Journal of the American Chemical Society, 130, 15802–15804. Valles, C., Drummond, C., Saadaoui, H., Furtado, C. A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., & Penicaud, A. (2008). Solutions of negatively charged graphene sheets and ribbons.
Journal of the American Chemical Society, 130, 15802–15804.
101.
Zurück zum Zitat Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W., & Chhowalla, M. (2010). Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22, 505–509. Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W., & Chhowalla, M. (2010). Blue photoluminescence from chemically derived graphene oxide.
Advanced Materials, 22, 505–509.
102.
Zurück zum Zitat Zhou, X. F., & Liu, Z. P. (2010). A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communications, 46, 2611–2613. Zhou, X. F., & Liu, Z. P. (2010). A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets.
Chemical Communications, 46, 2611–2613.
103.
Zurück zum Zitat Zhao, J. P., Pei, S. F., Ren, W. C., Gao, L. B., & Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4, 5245–5252. Zhao, J. P., Pei, S. F., Ren, W. C., Gao, L. B., & Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films.
ACS Nano, 4, 5245–5252.
104.
Zurück zum Zitat Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680. Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers.
Chemistry of Materials, 21, 5674–5680.
105.
Zurück zum Zitat Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12, 2164–2169. Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties.
Physical Chemistry Chemical Physics, 12, 2164–2169.
106.
Zurück zum Zitat Bae, S. Y., Jeon, I. Y., Yang, J., Park, N., Shin, H. S., Park, S., Ruoff, R. S., Dai, L. M., & Baek, J. B. (2011). Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. ACS Nano, 5, 4974–4980. Bae, S. Y., Jeon, I. Y., Yang, J., Park, N., Shin, H. S., Park, S., Ruoff, R. S., Dai, L. M., & Baek, J. B. (2011). Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.
ACS Nano, 5, 4974–4980.
107.
Zurück zum Zitat Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett Assembly. ACS Nano, 5, 6039–6051. Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett Assembly.
ACS Nano, 5, 6039–6051.
108.
Zurück zum Zitat Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., & Kim, J.-K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 21, 2978–2988. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., & Kim, J.-K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions.
Advanced Functional Materials, 21, 2978–2988.
109.
Zurück zum Zitat Jia, J. J., Kan, C., Lin, X. M., Shen, X., & Kim, J. K. (2014). Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon, 77, 244–254. Jia, J. J., Kan, C., Lin, X. M., Shen, X., & Kim, J. K. (2014). Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets.
Carbon, 77, 244–254.
110.
Zurück zum Zitat Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082. Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly.
Journal of Materials Chemistry, 22, 25072–25082.
111.
Zurück zum Zitat Sun, X. M., Luo, D. C., Liu, J. F., & Evans, D. G. (2010). Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano, 4, 3381–3389. Sun, X. M., Luo, D. C., Liu, J. F., & Evans, D. G. (2010). Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation.
ACS Nano, 4, 3381–3389.
112.
Zurück zum Zitat Wang, X. L., Bai, H., & Shi, G. Q. (2011). Size fractionation of graphene oxide sheets by ph-assisted selective sedimentation. Journal of the American Chemical Society, 133, 6338–6342. Wang, X. L., Bai, H., & Shi, G. Q. (2011). Size fractionation of graphene oxide sheets by ph-assisted selective sedimentation.
Journal of the American Chemical Society, 133, 6338–6342.
113.
Zurück zum Zitat Green, A. A., & Hersam, M. C. (2010). Emerging methods for producing monodisperse graphene dispersions. Journal of Physical Chemistry Letters, 1, 544–549. Green, A. A., & Hersam, M. C. (2010). Emerging methods for producing monodisperse graphene dispersions.
Journal of Physical Chemistry Letters, 1, 544–549.
114.
Zurück zum Zitat Arnold, M. S., Stupp, S. I., & Hersam, M. C. (2005). Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Letters, 5, 713–718. Arnold, M. S., Stupp, S. I., & Hersam, M. C. (2005). Enrichment of single-walled carbon nanotubes by diameter in density gradients.
Nano Letters, 5, 713–718.
115.
Zurück zum Zitat Haroz, E. H., Rice, W. D., Lu, B. Y., Ghosh, S., Hauge, R. H., Weisman, R. B., Doorn, S. K., & Kono, J. (2010). Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. ACS Nano, 4, 1955–1962. Haroz, E. H., Rice, W. D., Lu, B. Y., Ghosh, S., Hauge, R. H., Weisman, R. B., Doorn, S. K., & Kono, J. (2010). Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence.
ACS Nano, 4, 1955–1962.
116.
Zurück zum Zitat Zhu, Y. W., Murali, S., Cai, W. W., Li, X. S., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906–3924. Zhu, Y. W., Murali, S., Cai, W. W., Li, X. S., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications.
Advanced Materials, 22, 3906–3924.
117.
Zurück zum Zitat You, Y. M., Ni, Z. H., Yu, T., & Shen, Z. X. (2008). Edge chirality determination of graphene by Raman spectroscopy. Applied Physics Letters, 93, 163112. You, Y. M., Ni, Z. H., Yu, T., & Shen, Z. X. (2008). Edge chirality determination of graphene by Raman spectroscopy.
Applied Physics Letters, 93, 163112.
118.
Zurück zum Zitat Girit, C. O., Meyer, J. C., Erni, R., Rossell, M. D., Kisielowski, C., Yang, L., Park, C. H., Crommie, M. F., Cohen, M. L., Louie, S. G., & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science, 323, 1705–1708. Girit, C. O., Meyer, J. C., Erni, R., Rossell, M. D., Kisielowski, C., Yang, L., Park, C. H., Crommie, M. F., Cohen, M. L., Louie, S. G., & Zettl, A. (2009). Graphene at the edge: Stability and dynamics.
Science, 323, 1705–1708.
119.
Zurück zum Zitat Los, J. H., Ghiringhelli, L. M., Meijer, E. J., & Fasolino, A. (2005). Improved long-range reactive bond-order potential for carbon. I. Construction. Physical Review B, 72, 214102. Los, J. H., Ghiringhelli, L. M., Meijer, E. J., & Fasolino, A. (2005). Improved long-range reactive bond-order potential for carbon. I. Construction.
Physical Review B, 72, 214102.
120.
Zurück zum Zitat Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). Intrinsic ripples in graphene. Nature Materials, 6, 858–861. Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). Intrinsic ripples in graphene.
Nature Materials, 6, 858–861.
121.
Zurück zum Zitat Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene.
Nature Materials, 6, 183–191.
122.
Zurück zum Zitat He, H. Y., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide. Chemical Physics Letters, 287, 53–56. He, H. Y., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide.
Chemical Physics Letters, 287, 53–56.
123.
Zurück zum Zitat Boukhvalov, D. W., & Katsnelson, M. I. (2008). Modeling of graphite oxide. Journal of the American Chemical Society, 130, 10697–10701. Boukhvalov, D. W., & Katsnelson, M. I. (2008). Modeling of graphite oxide.
Journal of the American Chemical Society, 130, 10697–10701.
124.
Zurück zum Zitat Lin, X., Shen, X., Zheng, Q., Yousefi, N., Ye, L., Mai, Y.-W., & Kim, J.-K. (2012). Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano, 6, 10708–10719. Lin, X., Shen, X., Zheng, Q., Yousefi, N., Ye, L., Mai, Y.-W., & Kim, J.-K. (2012). Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets.
ACS Nano, 6, 10708–10719.
125.
Zurück zum Zitat Kopidakis, G., Remediakis, I. N., Fyta, M. G., & Kelires, P. C. (2007). Atomic and electronic structure of crystalline-amorphous carbon interfaces. Diamond and Related Materials, 16, 1875–1881. Kopidakis, G., Remediakis, I. N., Fyta, M. G., & Kelires, P. C. (2007). Atomic and electronic structure of crystalline-amorphous carbon interfaces.
Diamond and Related Materials, 16, 1875–1881.
126.
Zurück zum Zitat Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916. Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments.
Carbon, 49, 2905–2916.
127.
Zurück zum Zitat Jung, I., Vaupel, M., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., An, J., & Ruoff, R. S. (2008). Characterization of thermally reduced graphene oxide by imaging ellipsometry. Journal of Physical Chemistry C, 112, 8499–8506. Jung, I., Vaupel, M., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., An, J., & Ruoff, R. S. (2008). Characterization of thermally reduced graphene oxide by imaging ellipsometry.
Journal of Physical Chemistry C, 112, 8499–8506.
128.
Zurück zum Zitat Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049. Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers.
Journal of the American Chemical Society, 131, 1043–1049.
129.
Zurück zum Zitat Gomez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7, 3499–3503. Gomez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets.
Nano Letters, 7, 3499–3503.
130.
Zurück zum Zitat Chang, H. X., & Wu, H. K. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23, 1984–1997. Chang, H. X., & Wu, H. K. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications.
Advanced Functional Materials, 23, 1984–1997.
131.
Zurück zum Zitat Katsnelson, M. I. (2007). Graphene: Carbon in two dimensions. Materials Today, 10, 20–27. Katsnelson, M. I. (2007). Graphene: Carbon in two dimensions.
Materials Today, 10, 20–27.
132.
Zurück zum Zitat Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 3, 491–495. Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene.
Nature Nanotechnology, 3, 491–495.
133.
Zurück zum Zitat Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534. Geim, A. K. (2009). Graphene: Status and prospects.
Science, 324, 1530–1534.
134.
Zurück zum Zitat Li, X. L., Wang, X. R., Zhang, L., Lee, S. W., & Dai, H. J. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229–1232. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W., & Dai, H. J. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
Science, 319, 1229–1232.
135.
Zurück zum Zitat Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872–876. Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Nature, 458, 872–876.
136.
Zurück zum Zitat Bai, J. W., Zhong, X., Jiang, S., Huang, Y., & Duan, X. F. (2010). Graphene nanomesh. Nature Nanotechnology, 5, 190–194. Bai, J. W., Zhong, X., Jiang, S., Huang, Y., & Duan, X. F. (2010). Graphene nanomesh.
Nature Nanotechnology, 5, 190–194.
137.
Zurück zum Zitat Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., & Hornekaer, L. (2010). Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials, 9, 315–319. Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., & Hornekaer, L. (2010). Bandgap opening in graphene induced by patterned hydrogen adsorption.
Nature Materials, 9, 315–319.
138.
Zurück zum Zitat Wang, X. R., & Dai, H. J. (2010). Etching and narrowing of graphene from the edges. Nature Chemistry, 2, 661–665. Wang, X. R., & Dai, H. J. (2010). Etching and narrowing of graphene from the edges.
Nature Chemistry, 2, 661–665.
139.
Zurück zum Zitat Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum hall effect in graphene. Science, 315, 1379–1379. Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum hall effect in graphene.
Science, 315, 1379–1379.
140.
Zurück zum Zitat Kopelevich, Y., & Esquinazi, P. (2007). Graphene physics in graphite. Advanced Materials, 19, 4559–4563. Kopelevich, Y., & Esquinazi, P. (2007). Graphene physics in graphite.
Advanced Materials, 19, 4559–4563.
141.
Zurück zum Zitat Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463–470. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors.
ACS Nano, 2, 463–470.
142.
Zurück zum Zitat Pei, S. F., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210–3228. Pei, S. F., & Cheng, H. M. (2012). The reduction of graphene oxide.
Carbon, 50, 3210–3228.
143.
Zurück zum Zitat Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9, 4359–4363. Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes.
Nano Letters, 9, 4359–4363.
144.
Zurück zum Zitat Wang, S. J., Geng, Y., Zheng, Q., & Kim, J.-K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823. Wang, S. J., Geng, Y., Zheng, Q., & Kim, J.-K. (2010). Fabrication of highly conducting and transparent graphene films.
Carbon, 48, 1815–1823.
145.
Zurück zum Zitat Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material.
Nature Nanotechnology, 3, 270–274.
146.
Zurück zum Zitat Feng, H. B., Cheng, R., Zhao, X., Duan, X. F., & Li, J. H. (2013). A low-temperature method to produce highly reduced graphene oxide Nature Communications, 4, 1539. Feng, H. B., Cheng, R., Zhao, X., Duan, X. F., & Li, J. H. (2013). A low-temperature method to produce highly reduced graphene oxide
Nature Communications, 4, 1539.
147.
Zurück zum Zitat Viet, H. P., Tran, V. C., Nguyen-Phan, T. D., Hai, D. P., Kim, E. J., Hur, S. H., Shin, E. W., Kim, S., & Chung, J. S. (2010). One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 46, 4375–4377. Viet, H. P., Tran, V. C., Nguyen-Phan, T. D., Hai, D. P., Kim, E. J., Hur, S. H., Shin, E. W., Kim, S., & Chung, J. S. (2010). One-step synthesis of superior dispersion of chemically converted graphene in organic solvents.
Chemical Communications, 46, 4375–4377.
148.
Zurück zum Zitat Gao, W., Alemany, L. B., Ci, L. J., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1, 403–408. Gao, W., Alemany, L. B., Ci, L. J., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide.
Nature Chemistry, 1, 403–408.
149.
Zurück zum Zitat Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance. Advanced Functional Materials, 19, 1987–1992. Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance.
Advanced Functional Materials, 19, 1987–1992.
150.
Zurück zum Zitat Park, S., An, J. H., Jung, I. W., Piner, R. D., An, S. J., Li, X. S., Velamakanni, A., & Ruoff, R. S. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters, 9, 1593–1597. Park, S., An, J. H., Jung, I. W., Piner, R. D., An, S. J., Li, X. S., Velamakanni, A., & Ruoff, R. S. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents.
Nano Letters, 9, 1593–1597.
151.
Zurück zum Zitat Fan, Z. J., Wang, K., Wei, T., Yan, J., Song, L. P., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686–1689. Fan, Z. J., Wang, K., Wei, T., Yan, J., Song, L. P., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder.
Carbon, 48, 1686–1689.
152.
Zurück zum Zitat Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P., & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 5, 191–198. Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P., & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide.
ACS Nano, 5, 191–198.
153.
Zurück zum Zitat Mei, X. G., & Ouyang, J. Y. (2011). Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon, 49, 5389–5397. Mei, X. G., & Ouyang, J. Y. (2011). Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature.
Carbon, 49, 5389–5397.
154.
Zurück zum Zitat Dey, R. S., Hajra, S., Sahu, R. K., Raj, C. R., & Panigrahi, M. K. (2012). A rapid room temperature chemical route for the synthesis of graphene: Metal-mediated reduction of graphene oxide. Chemical Communications, 48, 1787–1789. Dey, R. S., Hajra, S., Sahu, R. K., Raj, C. R., & Panigrahi, M. K. (2012). A rapid room temperature chemical route for the synthesis of graphene: Metal-mediated reduction of graphene oxide.
Chemical Communications, 48, 1787–1789.
155.
Zurück zum Zitat Kumar, N. A., Gambarelli, S., Duclairoir, F., Bidan, G., & Dubois, L. (2013). Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities. Journal of Materials Chemistry A, 1, 2789–2794. Kumar, N. A., Gambarelli, S., Duclairoir, F., Bidan, G., & Dubois, L. (2013). Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities.
Journal of Materials Chemistry A, 1, 2789–2794.
156.
Zurück zum Zitat Pham, V. H., Pham, H. D., Dang, T. T., Hur, S. H., Kim, E. J., Kong, B. S., Kim, S., & Chung, J. S. (2012). Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 22, 10530–10536. Pham, V. H., Pham, H. D., Dang, T. T., Hur, S. H., Kim, E. J., Kong, B. S., Kim, S., & Chung, J. S. (2012). Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen.
Journal of Materials Chemistry, 22, 10530–10536.
157.
Zurück zum Zitat Barman, B. K., Mahanandia, P., & Nanda, K. K. (2013). Instantaneous reduction of graphene oxide at room temperature. RSC Advances, 3, 12621–12624. Barman, B. K., Mahanandia, P., & Nanda, K. K. (2013). Instantaneous reduction of graphene oxide at room temperature.
RSC Advances, 3, 12621–12624.
158.
Zurück zum Zitat Liu, Y. Z., Li, Y. F., Zhong, M., Yang, Y. G., Wen, Y. F., & Wang, M. Z. (2011). A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage. Journal of Materials Chemistry, 21, 15449–15455. Liu, Y. Z., Li, Y. F., Zhong, M., Yang, Y. G., Wen, Y. F., & Wang, M. Z. (2011). A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage.
Journal of Materials Chemistry, 21, 15449–15455.
159.
Zurück zum Zitat Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43, 291–312. Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint.
Chemical Society Reviews, 43, 291–312.
160.
Zurück zum Zitat Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487–1491. Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide.
ACS Nano, 2, 1487–1491.
161.
Zurück zum Zitat Liu, X. J., Pan, L. K., Zhao, Q. F., Lv, T., Zhu, G., Chen, T. Q., Lu, T., Sun, Z., & Sun, C. Q. (2012). UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J, 183, 238–243. Liu, X. J., Pan, L. K., Zhao, Q. F., Lv, T., Zhu, G., Chen, T. Q., Lu, T., Sun, Z., & Sun, C. Q. (2012). UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI).
Chem Eng J, 183, 238–243.
162.
Zurück zum Zitat Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93, 267–300. Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces.
Chemical Reviews, 93, 267–300.
163.
Zurück zum Zitat Zhou, M., Wang, Y. L., Zhai, Y. M., Zhai, J. F., Ren, W., Wang, F. A., & Dong, S. J. (2009). Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry-a European Journal, 15, 6116–6120. Zhou, M., Wang, Y. L., Zhai, Y. M., Zhai, J. F., Ren, W., Wang, F. A., & Dong, S. J. (2009). Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films.
Chemistry-a European Journal, 15, 6116–6120.
164.
Zurück zum Zitat An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1, 1259–1263. An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition.
Journal of Physical Chemistry Letters, 1, 1259–1263.
165.
Zurück zum Zitat Zhou, Y., Bao, Q. L., Tang, L. A. L., Zhong, Y. L., & Loh, K. P. (2009). Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21, 2950–2956. Zhou, Y., Bao, Q. L., Tang, L. A. L., Zhong, Y. L., & Loh, K. P. (2009). Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties.
Chemistry of Materials, 21, 2950–2956.
166.
Zurück zum Zitat Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., Farrar, J., Varshneya, R., Yang, Y., & Kaner, R. B. (2010). A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 4, 3845–3852. Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., Farrar, J., Varshneya, R., Yang, Y., & Kaner, R. B. (2010). A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents.
ACS Nano, 4, 3845–3852.
167.
Zurück zum Zitat Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., Celik, O., Mostrogiovanni, D., Granozzi, G., Garfunkel, E., & Chhowalla, M. (2009). Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 19, 2577–2583. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., Celik, O., Mostrogiovanni, D., Granozzi, G., Garfunkel, E., & Chhowalla, M. (2009). Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films.
Advanced Functional Materials, 19, 2577–2583.
168.
Zurück zum Zitat Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene.
Nature, 438, 197–200.
169.
Zurück zum Zitat Pike, G. E., & Seager, C. H. (1974). Percolation and conductivity: A computer study. I. Phys Rev B, 10, 1421–1434. Pike, G. E., & Seager, C. H. (1974). Percolation and conductivity: A computer study. I.
Phys Rev B, 10, 1421–1434.
170.
Zurück zum Zitat Kang, H., Kulkarni, A., Stankovich, S., Ruoff, R. S., & Baik, S. (2009). Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon, 47, 1520–1525. Kang, H., Kulkarni, A., Stankovich, S., Ruoff, R. S., & Baik, S. (2009). Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques.
Carbon, 47, 1520–1525.
171.
Zurück zum Zitat Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823. Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films.
Carbon, 48, 1815–1823.
172.
Zurück zum Zitat Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells.
Nano Letters, 8, 323–327.
173.
Zurück zum Zitat Wu, Z. S., Ren, W. C., Gao, L. B., Liu, B. L., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47, 493–499. Wu, Z. S., Ren, W. C., Gao, L. B., Liu, B. L., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers.
Carbon, 47, 493–499.
174.
Zurück zum Zitat Lu, Y., Pich, A., & Adler, H. J. P. (2004). Synthesis and characterization of polypyrrole dispersions prepared with different dopants. Macromolecular Symposia, 210, 411–417. Lu, Y., Pich, A., & Adler, H. J. P. (2004). Synthesis and characterization of polypyrrole dispersions prepared with different dopants.
Macromolecular Symposia, 210, 411–417.
175.
Zurück zum Zitat Li, X. L., Wang, H. L., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. J. (2009). Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 131, 15939–15944. Li, X. L., Wang, H. L., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. J. (2009). Simultaneous nitrogen doping and reduction of graphene oxide.
Journal of the American Chemical Society, 131, 15939–15944.
176.
Zurück zum Zitat Zheng, Q. B., Zhang, B., Lin, X. Y., Shen, X., Yousefi, N., Huang, Z. D., Li, Z. G., & Kim, J. K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082. Zheng, Q. B., Zhang, B., Lin, X. Y., Shen, X., Yousefi, N., Huang, Z. D., Li, Z. G., & Kim, J. K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly.
Journal of Materials Chemistry, 22, 25072–25082.
177.
Zurück zum Zitat Wu, Z. S., Ren, W. C., Gao, L. B., Zhao, J. P., Chen, Z. P., Liu, B. L., Tang, D. M., Yu, B., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 3, 411–417. Wu, Z. S., Ren, W. C., Gao, L. B., Zhao, J. P., Chen, Z. P., Liu, B. L., Tang, D. M., Yu, B., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation.
ACS Nano, 3, 411–417.
178.
Zurück zum Zitat Lopez, V., Sundaram, R. S., Gomez-Navarro, C., Olea, D., Burghard, M., Gomez-Herrero, J., Zamora, F., & Kern, K. (2009). Chemical capor deposition repair of graphene oxide: a route to highly conductive graphene monolayers. Advanced Materials, 21, 4683–4686. Lopez, V., Sundaram, R. S., Gomez-Navarro, C., Olea, D., Burghard, M., Gomez-Herrero, J., Zamora, F., & Kern, K. (2009). Chemical capor deposition repair of graphene oxide: a route to highly conductive graphene monolayers.
Advanced Materials, 21, 4683–4686.
179.
Zurück zum Zitat Su, Q., Pang, S. P., Alijani, V., Li, C., Feng, X. L., & Mullen, K. (2009). Composites of graphene with large aromatic molecules. Advanced Materials, 21, 3191–3195. Su, Q., Pang, S. P., Alijani, V., Li, C., Feng, X. L., & Mullen, K. (2009). Composites of graphene with large aromatic molecules.
Advanced Materials, 21, 3191–3195.
180.
Zurück zum Zitat Chen, H., Muller, M. B., Gilmore, K. J., Wallace, G. G., & Li, D. (2008). Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 20, 3557–3561. Chen, H., Muller, M. B., Gilmore, K. J., Wallace, G. G., & Li, D. (2008). Mechanically strong, electrically conductive, and biocompatible graphene paper.
Advanced Materials, 20, 3557–3561.
181.
Zurück zum Zitat Vlassiouk, I., Smirnov, S., Ivanov, I., Fulvio, P. F., Dai, S., Meyer, H., Chi, M. F., Hensley, D., Datskos, P., & Lavrik, N. V. (2011). Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder. Nanotechnology, 22, 275716. Vlassiouk, I., Smirnov, S., Ivanov, I., Fulvio, P. F., Dai, S., Meyer, H., Chi, M. F., Hensley, D., Datskos, P., & Lavrik, N. V. (2011). Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder.
Nanotechnology, 22, 275716.
182.
Zurück zum Zitat Yu, C. H., Shi, L., Yao, Z., Li, D. Y., & Majumdar, A. (2005). Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 5, 1842–1846. Yu, C. H., Shi, L., Yao, Z., Li, D. Y., & Majumdar, A. (2005). Thermal conductance and thermopower of an individual single-wall carbon nanotube.
Nano Letters, 5, 1842–1846.
183.
Zurück zum Zitat Nika, D. L., & Balandin, A. A. (2012). Two-dimensional phonon transport in graphene. Journal of Physics-Condensed Matter, 24, 233203. Nika, D. L., & Balandin, A. A. (2012). Two-dimensional phonon transport in graphene.
Journal of Physics-Condensed Matter, 24, 233203.
184.
Zurück zum Zitat Nika, D. L., Pokatilov, E. P., & Balandin, A. A. (2011). Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches. Physica Status Solidi B-Basic Solid State Physics, 248, 2609–2614. Nika, D. L., Pokatilov, E. P., & Balandin, A. A. (2011). Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches.
Physica Status Solidi B-Basic Solid State Physics, 248, 2609–2614.
185.
Zurück zum Zitat Berber, S., Kwon, Y. K., & Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84, 4613–4616. Berber, S., Kwon, Y. K., & Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes.
Physical Review Letters, 84, 4613–4616.
186.
Zurück zum Zitat Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene.
Nano Letters, 8, 902–907.
187.
Zurück zum Zitat Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10, 569–581. Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials.
Nature Materials, 10, 569–581.
188.
Zurück zum Zitat Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92, 151911. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits.
Applied Physics Letters, 92, 151911.
189.
Zurück zum Zitat Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X. S., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. S., & Shi, L. (2010). Two-dimensional phonon transport in supported graphene. Science, 328, 213–216. Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X. S., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. S., & Shi, L. (2010). Two-dimensional phonon transport in supported graphene.
Science, 328, 213–216.
190.
Zurück zum Zitat Ghosh, S., Bao, W. Z., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., & Balandin, A. A. (2010). Dimensional crossover of thermal transport in few-layer graphene. Nature Materials, 9, 555–558. Ghosh, S., Bao, W. Z., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., & Balandin, A. A. (2010). Dimensional crossover of thermal transport in few-layer graphene.
Nature Materials, 9, 555–558.
191.
Zurück zum Zitat Jauregui, L. A., Yue, Y. N., Sidorov, A. N., Hu, J. N., Yu, Q. K., Lopez, G., Jalilian, R., Benjamin, D. K., Delk, D. A., Wu, W., Liu, Z. H., Wang, X. W., Jiang, Z. G., Ruan, X. L., Bao, J. M., Pei, S. S., & Chen, Y. P. (2010). Thermal transport in graphene nanostructures: experiments and simulations. Graphene, Ge/Iii-V, and Emerging Materials for Post-Cmos Applications 2, 28, 73–83. Jauregui, L. A., Yue, Y. N., Sidorov, A. N., Hu, J. N., Yu, Q. K., Lopez, G., Jalilian, R., Benjamin, D. K., Delk, D. A., Wu, W., Liu, Z. H., Wang, X. W., Jiang, Z. G., Ruan, X. L., Bao, J. M., Pei, S. S., & Chen, Y. P. (2010). Thermal transport in graphene nanostructures: experiments and simulations.
Graphene, Ge/Iii-V, and Emerging Materials for Post-Cmos Applications 2, 28, 73–83.
192.
Zurück zum Zitat Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., & Geim, A. K. (2010). Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 4, 1889–1892. Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., & Geim, A. K. (2010). Thermal conductivity of graphene in corbino membrane geometry.
ACS Nano, 4, 1889–1892.
193.
Zurück zum Zitat Murali, R., Yang, Y. X., Brenner, K., Beck, T., & Meindl, J. D. (2009). Breakdown current density of graphene nanoribbons. Applied Physics Letters, 94, 243114. Murali, R., Yang, Y. X., Brenner, K., Beck, T., & Meindl, J. D. (2009). Breakdown current density of graphene nanoribbons.
Applied Physics Letters, 94, 243114.
194.
Zurück zum Zitat Nika, D. L., Pokatilov, E. P., Askerov, A. S., & Balandin, A. A. (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Physical Review B, 79, 155413. Nika, D. L., Pokatilov, E. P., Askerov, A. S., & Balandin, A. A. (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering.
Physical Review B, 79, 155413.
195.
Zurück zum Zitat Nika, D. L., Ghosh, S., Pokatilov, E. P., & Balandin, A. A. (2009). Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 94, 203103. Nika, D. L., Ghosh, S., Pokatilov, E. P., & Balandin, A. A. (2009). Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite.
Applied Physics Letters, 94, 203103.
196.
Zurück zum Zitat Evans, W. J., Hu, L., & Keblinski, P. (2010). Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Applied Physics Letters, 96, 203112. Evans, W. J., Hu, L., & Keblinski, P. (2010). Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination.
Applied Physics Letters, 96, 203112.
197.
Zurück zum Zitat Lindsay, L., Broido, D. A., Mingo, N. (2010). Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Physical Review B, 82, 161402(R). Lindsay, L., Broido, D. A., Mingo, N. (2010). Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit.
Physical Review B, 82, 161402(R).
198.
Zurück zum Zitat Munoz, E., Lu, J. X., & Yakobson, B. I. (2010). Ballistic thermal conductance of graphene ribbons. Nano Letters, 10, 1652–1656. Munoz, E., Lu, J. X., & Yakobson, B. I. (2010). Ballistic thermal conductance of graphene ribbons.
Nano Letters, 10, 1652–1656.
199.
Zurück zum Zitat Schwamb, T., Burg, B. R., Schirmer, N. C., & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology, 20, 405704. Schwamb, T., Burg, B. R., Schirmer, N. C., & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
Nanotechnology, 20, 405704.
200.
Zurück zum Zitat Mahanta, N. K., & Abramson, A. R. (2012). Thermal conductivity of graphene and graphene oxide nanoplatelets. 13th IEEE ITHERM Conference, 1–6. Mahanta, N. K., & Abramson, A. R. (2012). Thermal conductivity of graphene and graphene oxide nanoplatelets.
13th IEEE ITHERM Conference, 1–6.
201.
Zurück zum Zitat Shen, X., Lin, X. Y., Jia, J. J., Wang, Z. Y., Li, Z. G., & Kim, J. K. (2014). Tunable thermal conductivities of graphene oxide by functionalization and tensile loading. Carbon, 80, 235–245. Shen, X., Lin, X. Y., Jia, J. J., Wang, Z. Y., Li, Z. G., & Kim, J. K. (2014). Tunable thermal conductivities of graphene oxide by functionalization and tensile loading.
Carbon, 80, 235–245.
202.
Zurück zum Zitat Wu, H., & Drzal, L. T. (2012). Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon, 50, 1135–1145. Wu, H., & Drzal, L. T. (2012). Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties.
Carbon, 50, 1135–1145.
203.
Zurück zum Zitat Xiang, J. L., & Drzal, L. T. (2011). Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 49, 773–778. Xiang, J. L., & Drzal, L. T. (2011). Thermal conductivity of exfoliated graphite nanoplatelet paper.
Carbon, 49, 773–778.
204.
Zurück zum Zitat Xin, G. Q., Sun, H. T., Hu, T., Fard, H. R., Sun, X., Koratkar, N., Borca-Tasciuc, T., & Lian, J. (2014). Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 26, 4521–4526. Xin, G. Q., Sun, H. T., Hu, T., Fard, H. R., Sun, X., Koratkar, N., Borca-Tasciuc, T., & Lian, J. (2014). Large-area freestanding graphene paper for superior thermal management.
Advanced Materials, 26, 4521–4526.
205.
Zurück zum Zitat Yu, W., Xie, H. Q., Li, F. X., Zhao, J. C., & Zhang, Z. H. (2013). Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions. Applied Physics Letters, 103, 141913. Yu, W., Xie, H. Q., Li, F. X., Zhao, J. C., & Zhang, Z. H. (2013). Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions.
Applied Physics Letters, 103, 141913.
206.
Zurück zum Zitat P. Kim, L. Shi, A., Majumdar, & McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 87, 215502. P. Kim, L. Shi, A., Majumdar, & McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes.
Physical Review Letters, 87, 215502.
207.
Zurück zum Zitat Pop, E., Mann, D., Wang, Q., Goodson, K. E., & Dai, H. J. (2006). Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 6, 96–100. Pop, E., Mann, D., Wang, Q., Goodson, K. E., & Dai, H. J. (2006). Thermal conductance of an individual single-wall carbon nanotube above room temperature.
Nano Letters, 6, 96–100.
208.
Zurück zum Zitat Hone, J., Whitney, M., Piskoti, C., & Zettl, A. (1999). Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 59, R2514–R2516. Hone, J., Whitney, M., Piskoti, C., & Zettl, A. (1999). Thermal conductivity of single-walled carbon nanotubes.
Physical Review B, 59, R2514–R2516.
209.
Zurück zum Zitat Chang, C. W., Fennimore, A. M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D. Y., Majumdar, A., & Zettl, A. (2006). Isotope effect on the thermal conductivity of boron nitride nanotubes. Physical Review Letters, 97, 085901. Chang, C. W., Fennimore, A. M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D. Y., Majumdar, A., & Zettl, A. (2006). Isotope effect on the thermal conductivity of boron nitride nanotubes.
Physical Review Letters, 97, 085901.
210.
Zurück zum Zitat Fujii, M., Zhang, X., Xie, H. Q., Ago, H., Takahashi, K., Ikuta, T., Abe, H., & Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 95, 065502. Fujii, M., Zhang, X., Xie, H. Q., Ago, H., Takahashi, K., Ikuta, T., Abe, H., & Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube.
Physical Review Letters, 95, 065502.
211.
Zurück zum Zitat Che, J. W., Cagin, T., & Goddard, W. A. (2000). Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65–69. Che, J. W., Cagin, T., & Goddard, W. A. (2000). Thermal conductivity of carbon nanotubes.
Nanotechnology, 11, 65–69.
212.
Zurück zum Zitat Donadio, D., & Galli, G. (2007). Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Physical Review Letters, 99, 255502. Donadio, D., & Galli, G. (2007). Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation.
Physical Review Letters, 99, 255502.
213.
Zurück zum Zitat Subrina, S., Kotchetkov, D., & Balandin, A. A. (2009). Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electr Device Letters, 30, 1281–1283. Subrina, S., Kotchetkov, D., & Balandin, A. A. (2009). Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders.
IEEE Electr Device Letters, 30, 1281–1283.
214.
Zurück zum Zitat Peres, N. M. R., Guinea, F., & Neto, A. H. C. (2006). Electronic properties of disordered two-dimensional carbon. Physical Review B, 73, 125411. Peres, N. M. R., Guinea, F., & Neto, A. H. C. (2006). Electronic properties of disordered two-dimensional carbon.
Physical Review B, 73, 125411.
215.
Zurück zum Zitat Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2006). Unusual microwave response of Dirac quasiparticles in graphene. Physical Review Letters, 96, 256802. Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2006). Unusual microwave response of Dirac quasiparticles in graphene.
Physical Review Letters, 96, 256802.
216.
Zurück zum Zitat Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320, 1308–1308. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene.
Science, 320, 1308–1308.
217.
Zurück zum Zitat Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., Feng, Y. P., & Shen, Z. X. (2007). Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 7, 2758–2763. Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., Feng, Y. P., & Shen, Z. X. (2007). Graphene thickness determination using reflection and contrast spectroscopy.
Nano Letters, 7, 2758–2763.
218.
Zurück zum Zitat Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., Kim, J. K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 21, 2978–2988. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., Kim, J. K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions.
Advanced Functional Materials, 21, 2978–2988.
219.
Zurück zum Zitat Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide.
ACS Nano, 4, 4806–4814.
220.
Zurück zum Zitat Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388. Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene.
Science, 321, 385–388.
221.
Zurück zum Zitat Zheng, Q., Li, Z., & Yang, J. (2013). Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets. Rsc Advances, 3, 923–929. Zheng, Q., Li, Z., & Yang, J. (2013). Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets.
Rsc Advances, 3, 923–929.
222.
Zurück zum Zitat Zheng, Q., Geng, Y., Wang, S., Li, Z., & Kim, J.-K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315–4322. Zheng, Q., Geng, Y., Wang, S., Li, Z., & Kim, J.-K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets.
Carbon, 48, 4315–4322.
223.
Zurück zum Zitat Shen, X., Lin, X. Y., Yousefi, N., Jia, J. J., & Kim, J. K. (2014). Wrinkling in graphene sheets and graphene oxide papers. Carbon, 66, 84–92. Shen, X., Lin, X. Y., Yousefi, N., Jia, J. J., & Kim, J. K. (2014). Wrinkling in graphene sheets and graphene oxide papers.
Carbon, 66, 84–92.
224.
Zurück zum Zitat Uddin, M. N., Huang, Z. D., Mai, Y. W., & Kim, J. K. (2014). Tensile and tearing fracture properties of graphene oxide papers intercalated with carbon nanotubes. Carbon, 77, 481–491. Uddin, M. N., Huang, Z. D., Mai, Y. W., & Kim, J. K. (2014). Tensile and tearing fracture properties of graphene oxide papers intercalated with carbon nanotubes.
Carbon, 77, 481–491.
225.
Zurück zum Zitat Politano, A., Marino, A. R., Campi, D., Farias, D., Miranda, R., & Chiarello, G. (2012). Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon, 50, 4903–4910. Politano, A., Marino, A. R., Campi, D., Farias, D., Miranda, R., & Chiarello, G. (2012). Elastic properties of a macroscopic graphene sample from phonon dispersion measurements.
Carbon, 50, 4903–4910.
226.
Zurück zum Zitat Liu, F., Ming, P. M., & Li, J. (2007). Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76, 064120. Liu, F., Ming, P. M., & Li, J. (2007). Ab initio calculation of ideal strength and phonon instability of graphene under tension.
Physical Review B, 76, 064120.
227.
Zurück zum Zitat Bera, S., Arnold, A., Evers, F., Narayanan, R., & Wolfle, P. (2010). Elastic properties of graphene flakes: Boundary effects and lattice vibrations. Physical Review B, 82, 195445. Bera, S., Arnold, A., Evers, F., Narayanan, R., & Wolfle, P. (2010). Elastic properties of graphene flakes: Boundary effects and lattice vibrations.
Physical Review B, 82, 195445.
228.
Zurück zum Zitat Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2010). Elastic properties of hydrogenated graphene. Physical Review B, 82, 235414. Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2010). Elastic properties of hydrogenated graphene.
Physical Review B, 82, 235414.
229.
Zurück zum Zitat Zheng, Q. B., Geng, Y., Wang, S. J., Li, Z. G., & Kim, J. K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315–4322. Zheng, Q. B., Geng, Y., Wang, S. J., Li, Z. G., & Kim, J. K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets.
Carbon, 48, 4315–4322.
230.
Zurück zum Zitat Kim, J., Cote, L. J., Kim, F., & Huang, J. X. (2010). Visualizing graphene based sheets by fluorescence quenching microscopy. Journal of the American Chemical Society, 132, 260–267. Kim, J., Cote, L. J., Kim, F., & Huang, J. X. (2010). Visualizing graphene based sheets by fluorescence quenching microscopy.
Journal of the American Chemical Society, 132, 260–267.
231.
Zurück zum Zitat Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A. (2009). Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Physical Review Letters, 102, 046808. Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A. (2009). Finite temperature lattice properties of graphene beyond the quasiharmonic approximation.
Physical Review Letters, 102, 046808.
232.
Zurück zum Zitat Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2009). Nonlinear elasticity of monolayer graphene. Physical Review Letters, 102, 235502. Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2009). Nonlinear elasticity of monolayer graphene.
Physical Review Letters, 102, 235502.
233.
Zurück zum Zitat Reddy, C. D., Ramasubramaniam, A., Shenoy, V. B., & Zhang, Y. W. (2009). Edge elastic properties of defect-free single-layer graphene sheets. Applied Physics Letters, 94, 101904. Reddy, C. D., Ramasubramaniam, A., Shenoy, V. B., & Zhang, Y. W. (2009). Edge elastic properties of defect-free single-layer graphene sheets.
Applied Physics Letters, 94, 101904.
234.
Zurück zum Zitat Suk, J. W., Piner, R. D., An, J. H., & Ruoff, R. S. (2010). Mechanical properties of mono layer graphene oxide. Acs Nano, 4, 6557–6564. Suk, J. W., Piner, R. D., An, J. H., & Ruoff, R. S. (2010). Mechanical properties of mono layer graphene oxide.
Acs Nano, 4, 6557–6564.
235.
Zurück zum Zitat Zheng, Q. B., Li, Z. G., Geng, Y., Wang, S. J., & Kim, J. K. (2010). Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets. Journal of Nanoscience and Nanotechnology, 10, 7070–7074. Zheng, Q. B., Li, Z. G., Geng, Y., Wang, S. J., & Kim, J. K. (2010). Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets.
Journal of Nanoscience and Nanotechnology, 10, 7070–7074.
236.
Zurück zum Zitat Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 48, 898–904. Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene.
Carbon, 48, 898–904.
237.
Zurück zum Zitat Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). Mechanical properties of methyl functionalized graphene: A molecular dynamics study. Nanotechnology, 21, 115709. Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). Mechanical properties of methyl functionalized graphene: A molecular dynamics study.
Nanotechnology, 21, 115709.
238.
Zurück zum Zitat Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper.
Nature, 448, 457–460.
239.
Zurück zum Zitat Park, S., Lee, K. S., Bozoklu, G., Cai, W., Nguyen, S. T., & Ruoff’, R. S. (2008). Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano, 2, 572–578. Park, S., Lee, K. S., Bozoklu, G., Cai, W., Nguyen, S. T., & Ruoff’, R. S. (2008). Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking.
ACS Nano, 2, 572–578.
240.
Zurück zum Zitat Park, S., Dikin, D. A., Nguyen, S. T., & Ruoff, R. S. (2009). Graphene oxide sheets chemically cross-linked by polyallylamine. Journal of Physical Chemistry C, 113, 15801–15804. Park, S., Dikin, D. A., Nguyen, S. T., & Ruoff, R. S. (2009). Graphene oxide sheets chemically cross-linked by polyallylamine.
Journal of Physical Chemistry C, 113, 15801–15804.
241.
Zurück zum Zitat Guo, P., Song, H. H., & Chen, X. H. (2009). Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 11, 1320–1324. Guo, P., Song, H. H., & Chen, X. H. (2009). Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries.
Electrochemistry Communications, 11, 1320–1324.
242.
Zurück zum Zitat Lin, X. Y., Liu, X., Jia, J. J., Shen, X., & Kim, J. K. (2014). Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. Composites Science and Technology, 100, 166–173. Lin, X. Y., Liu, X., Jia, J. J., Shen, X., & Kim, J. K. (2014). Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers.
Composites Science and Technology, 100, 166–173.
243.
Zurück zum Zitat Casablanca, L. B., Shaibat, M. A., Cai, W. W. W., Park, S., Piner, R., Ruoff, R. S., & Ishii, Y. (2010). NMR-based structural modeling of graphite oxide using multidimensional C-13 solid-state NMR and ab initio chemical shift calculations. Journal of the American Chemical Society, 132, 5672–5676. Casablanca, L. B., Shaibat, M. A., Cai, W. W. W., Park, S., Piner, R., Ruoff, R. S., & Ishii, Y. (2010). NMR-based structural modeling of graphite oxide using multidimensional C-13 solid-state NMR and ab initio chemical shift calculations.
Journal of the American Chemical Society, 132, 5672–5676.
244.
Zurück zum Zitat Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25, 5957–5968. Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide.
Langmuir, 25, 5957–5968.
245.
Zurück zum Zitat Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38. Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets.
Materials Today, 13, 28–38.
246.
Zurück zum Zitat Zheng, J. A., Di, C. A., Liu, Y. Q., Liu, H. T., Guo, Y. L., Du, C. Y., Wu, T., Yu, G., & Zhu, D. B. (2010). High quality graphene with large flakes exfoliated by oleyl amine. Chemical Communications, 46, 5728–5730. Zheng, J. A., Di, C. A., Liu, Y. Q., Liu, H. T., Guo, Y. L., Du, C. Y., Wu, T., Yu, G., & Zhu, D. B. (2010). High quality graphene with large flakes exfoliated by oleyl amine.
Chemical Communications, 46, 5728–5730.
247.
Zurück zum Zitat Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Obergfell, D., Roth, S., Girit, C., & Zettl, A. (2007). On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 143, 101–109. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Obergfell, D., Roth, S., Girit, C., & Zettl, A. (2007). On the roughness of single- and bi-layer graphene membranes.
Solid State Communications, 143, 101–109.
248.
Zurück zum Zitat Gomez-Navarro, C., Meyer, J. C., Sundaram, R. S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., & Kaiser, U. (2010). Atomic structure of reduced graphene oxide. Nano Letters, 10, 1144–1148. Gomez-Navarro, C., Meyer, J. C., Sundaram, R. S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., & Kaiser, U. (2010). Atomic structure of reduced graphene oxide.
Nano Letters, 10, 1144–1148.
249.
Zurück zum Zitat Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 8, 3582–3586. Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes.
Nano Letters, 8, 3582–3586.
250.
Zurück zum Zitat Hansma, P. K., & Tersoff, J. (1987). Scanning tunneling microscopy. Journal of Applied Physics, 61, R1–R23. Hansma, P. K., & Tersoff, J. (1987). Scanning tunneling microscopy.
Journal of Applied Physics, 61, R1–R23.
251.
Zurück zum Zitat The Nobel Prize in Physics. (1986). http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/press.html. Accessed 01 Dec 2014. The Nobel Prize in Physics. (1986).
http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/press.html. Accessed 01 Dec 2014.
252.
Zurück zum Zitat Hansma, P. K., Elings, V. B., Marti, O., & Bracker, C. E. (1988). Scanning tunneling microscopy and atomic force microscopy—application to biology and technology. Science, 242, 209–216. Hansma, P. K., Elings, V. B., Marti, O., & Bracker, C. E. (1988). Scanning tunneling microscopy and atomic force microscopy—application to biology and technology.
Science, 242, 209–216.
253.
Zurück zum Zitat Tapaszto, L., Dobrik, G., Lambin, P., & Biro, L. P. (2008). Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 3, 397–401. Tapaszto, L., Dobrik, G., Lambin, P., & Biro, L. P. (2008). Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
Nature Nanotechnology, 3, 397–401.
254.
Zurück zum Zitat Schouteden, K., Volodin, A., & Moorkens, T., Van Haesendonck, C. (2011). Peeling off graphene from Co nanoparticle covered graphite in a scanning tunneling microscope. Carbon, 49, 2258–2263. Schouteden, K., Volodin, A., & Moorkens, T., Van Haesendonck, C. (2011). Peeling off graphene from Co nanoparticle covered graphite in a scanning tunneling microscope.
Carbon, 49, 2258–2263.
255.
Zurück zum Zitat Harrison, S. E., Capano, M. A., & Reifenberger, R. (2010). Scanning tunneling microscope study of striated carbon ridges in few-layer epitaxial graphene formed on 4 H-silicon carbide (0001). Applied Physics Letters, 96, 081905. Harrison, S. E., Capano, M. A., & Reifenberger, R. (2010). Scanning tunneling microscope study of striated carbon ridges in few-layer epitaxial graphene formed on 4 H-silicon carbide (0001).
Applied Physics Letters, 96, 081905.
256.
Zurück zum Zitat Breitwieser, R., Hu, Y. C., Chao, Y. C., Li, R. J., Tzeng, Y. R., Li, L. J., Liou, S. C., Lin, K. C., Chen, C. W., & Pai, W. W. (2014). Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip. Carbon, 77, 236–243. Breitwieser, R., Hu, Y. C., Chao, Y. C., Li, R. J., Tzeng, Y. R., Li, L. J., Liou, S. C., Lin, K. C., Chen, C. W., & Pai, W. W. (2014). Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip.
Carbon, 77, 236–243.
257.
Zurück zum Zitat Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97, 187401. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers.
Physical Review Letters, 97, 187401.
258.
Zurück zum Zitat Voggu, R., Das, B., Rout, C. S., & Rao, C. N. R. (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. Journal of Physics-Condensed Matter, 20, 472204. Voggu, R., Das, B., Rout, C. S., & Rao, C. N. R. (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques.
Journal of Physics-Condensed Matter, 20, 472204.
259.
Zurück zum Zitat Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 14095–14107. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon.
Physical Review B, 61, 14095–14107.
260.
Zurück zum Zitat Barpanda, P., Fanchini, G., & Amatucci, G. G. (2011). Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon, 49, 2538–2548. Barpanda, P., Fanchini, G., & Amatucci, G. G. (2011). Structure, surface morphology and electrochemical properties of brominated activated carbons.
Carbon, 49, 2538–2548.
261.
Zurück zum Zitat Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9, 1276–1291. Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy.
Physical Chemistry Chemical Physics, 9, 1276–1291.
- Titel
- Synthesis, Structure, and Properties of Graphene and Graphene Oxide
- DOI
- https://doi.org/10.1007/978-1-4939-2769-2_2
- Autoren:
-
Qingbin Zheng
Jang-Kyo Kim
- Verlag
- Springer New York
- Sequenznummer
- 2
- Kapitelnummer
- 2