Skip to main content

2018 | OriginalPaper | Buchkapitel

Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks

verfasst von : Gaspar Morgado, Daniel Gerngross, Tania M. Roberts, Sven Panke

Erschienen in: Synthetic Biology – Metabolic Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRef Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRef
2.
Zurück zum Zitat Pamies O, Bäckvall JE (2003) Combined metal catalysis and biocatalysis for an efficient deracemization process. Curr Opin Biotechnol 14:407–413CrossRef Pamies O, Bäckvall JE (2003) Combined metal catalysis and biocatalysis for an efficient deracemization process. Curr Opin Biotechnol 14:407–413CrossRef
3.
Zurück zum Zitat Lee JW, Na D, Park JM, Lee J, Choi S et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546CrossRef Lee JW, Na D, Park JM, Lee J, Choi S et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546CrossRef
4.
Zurück zum Zitat Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRef Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358CrossRef
5.
Zurück zum Zitat Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288CrossRef Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288CrossRef
6.
Zurück zum Zitat Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972CrossRef Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972CrossRef
7.
Zurück zum Zitat Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol Bioeng 6:221–270 Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol Bioeng 6:221–270
8.
Zurück zum Zitat Fessner W-D, Walter C (1992) “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew Chem Int Ed 31:614–616CrossRef Fessner W-D, Walter C (1992) “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew Chem Int Ed 31:614–616CrossRef
9.
Zurück zum Zitat Härle J, Panke S (2014) Synthetic biology for oligosaccharide production. Curr Org Chem 18:987–1004CrossRef Härle J, Panke S (2014) Synthetic biology for oligosaccharide production. Curr Org Chem 18:987–1004CrossRef
10.
Zurück zum Zitat Endo T, Koizumi S (2001) Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv Synth Catal 343:521–526CrossRef Endo T, Koizumi S (2001) Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv Synth Catal 343:521–526CrossRef
11.
Zurück zum Zitat Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16:847–850CrossRef Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16:847–850CrossRef
12.
Zurück zum Zitat Altenbuchner J, Siemann-Herzberg M, Syldatk C (2001) Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol 12:559–563CrossRef Altenbuchner J, Siemann-Herzberg M, Syldatk C (2001) Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol 12:559–563CrossRef
13.
Zurück zum Zitat Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 148. Springer, Heidelberg, p 475 Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 148. Springer, Heidelberg, p 475
14.
Zurück zum Zitat Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D et al (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Proc Natl Acad Sci U S A 23:576–585 Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D et al (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Proc Natl Acad Sci U S A 23:576–585
15.
Zurück zum Zitat Chen X, Zhang C, Zou R, Zhou K, Stephanopoulos G et al (2013) Statistical experimental design guided optimization of one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS ONE 8, e79650CrossRef Chen X, Zhang C, Zou R, Zhou K, Stephanopoulos G et al (2013) Statistical experimental design guided optimization of one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS ONE 8, e79650CrossRef
16.
Zurück zum Zitat Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS et al (1997) An efficient process for the production of N-acetylneuraminic acid using N-acetylneuraminic aldolase. Enzyme Microb Technol 20:393–400CrossRef Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS et al (1997) An efficient process for the production of N-acetylneuraminic acid using N-acetylneuraminic aldolase. Enzyme Microb Technol 20:393–400CrossRef
17.
Zurück zum Zitat Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson TM et al (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392–399CrossRef Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson TM et al (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392–399CrossRef
18.
Zurück zum Zitat Babich L, van Hermet LJ, Bury A, Hartrog AF, Falcicchio P et al (2011) Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction. Green Chem 13:2895–2900CrossRef Babich L, van Hermet LJ, Bury A, Hartrog AF, Falcicchio P et al (2011) Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction. Green Chem 13:2895–2900CrossRef
19.
Zurück zum Zitat Schümperli M, Pellaux R, Panke S (2007) Chemcial and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 75:33–45CrossRef Schümperli M, Pellaux R, Panke S (2007) Chemcial and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 75:33–45CrossRef
20.
Zurück zum Zitat Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare sugar formation. Angew Chem Int Ed 54:4182–4186CrossRef Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare sugar formation. Angew Chem Int Ed 54:4182–4186CrossRef
21.
Zurück zum Zitat Cheng Q, Xiang L, Izumikawa M, Meluzzi D, Moore BS (2007) Enzymatic total synthesis of enterocin polyketides. Nat Chem Biol 3:557–558CrossRef Cheng Q, Xiang L, Izumikawa M, Meluzzi D, Moore BS (2007) Enzymatic total synthesis of enterocin polyketides. Nat Chem Biol 3:557–558CrossRef
22.
Zurück zum Zitat Schrittwieser JH, Groenendaal B, Resch V, Ghislieri D, Wallner S et al (2014) Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion. Angew Chem Int Ed 53:3731–3734CrossRef Schrittwieser JH, Groenendaal B, Resch V, Ghislieri D, Wallner S et al (2014) Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion. Angew Chem Int Ed 53:3731–3734CrossRef
23.
Zurück zum Zitat O’Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman JL et al (2014) A regio- and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2,5-disubstituted pyrrolidines. Angew Chem Int Ed 53:2447–2450CrossRef O’Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman JL et al (2014) A regio- and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2,5-disubstituted pyrrolidines. Angew Chem Int Ed 53:2447–2450CrossRef
24.
Zurück zum Zitat Sehl T, Hailes HC, Ward JM, Wardenga R, Lieres E et al (2013) Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew Chem Int Ed 52:6772–6775CrossRef Sehl T, Hailes HC, Ward JM, Wardenga R, Lieres E et al (2013) Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew Chem Int Ed 52:6772–6775CrossRef
25.
Zurück zum Zitat Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B et al (2012) Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5:2165–2172CrossRef Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B et al (2012) Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5:2165–2172CrossRef
26.
Zurück zum Zitat Rieckenberg F, Ardao I, Rujananon R, Zeng A-P (2014) Cell-free synthesis of 1,3-propanediol from glycerol with a high yield. Eng Life Sci 14:380–386CrossRef Rieckenberg F, Ardao I, Rujananon R, Zeng A-P (2014) Cell-free synthesis of 1,3-propanediol from glycerol with a high yield. Eng Life Sci 14:380–386CrossRef
27.
Zurück zum Zitat Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MW (2007) High-yield hydrogen production from starch and water by synthetic enzymatic pathway. PLoS ONE 2, e456CrossRef Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MW (2007) High-yield hydrogen production from starch and water by synthetic enzymatic pathway. PLoS ONE 2, e456CrossRef
28.
Zurück zum Zitat Martin del Campo JS, Rollin J, Myung S, Chun Y, Chandravan S et al (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed 52:4587–4590CrossRef Martin del Campo JS, Rollin J, Myung S, Chun Y, Chandravan S et al (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed 52:4587–4590CrossRef
29.
Zurück zum Zitat Rollin JA, del Campo JM, Myung S, Sun F, You C et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci U S A 112:4964–4969CrossRef Rollin JA, del Campo JM, Myung S, Sun F, You C et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci U S A 112:4964–4969CrossRef
30.
Zurück zum Zitat Wang Y, Huang W, Sathitsuksanoh N, YZhu Z, Zhang YHP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380CrossRef Wang Y, Huang W, Sathitsuksanoh N, YZhu Z, Zhang YHP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380CrossRef
31.
Zurück zum Zitat Zhu Z, Kin TT, Sun F, You C, Zhang YHP (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026 Zhu Z, Kin TT, Sun F, You C, Zhang YHP (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026
32.
Zurück zum Zitat Ye X, Honda K, Sakai T, Okano K, Omasa T et al (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120CrossRef Ye X, Honda K, Sakai T, Okano K, Omasa T et al (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120CrossRef
33.
Zurück zum Zitat Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X et al (2013) In vitro production of n-butanol from glucose. Metabol Eng 20:84–91CrossRef Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X et al (2013) In vitro production of n-butanol from glucose. Metabol Eng 20:84–91CrossRef
34.
Zurück zum Zitat Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164:34–40CrossRef Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164:34–40CrossRef
35.
Zurück zum Zitat Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82CrossRef Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82CrossRef
36.
Zurück zum Zitat Jewett M, Calhoun K, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220CrossRef Jewett M, Calhoun K, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220CrossRef
37.
Zurück zum Zitat Spirin AS, Swartz R (2008) Cell-free protein synthesis: methods and protocols. Wiley-VCH, Weinheim Spirin AS, Swartz R (2008) Cell-free protein synthesis: methods and protocols. Wiley-VCH, Weinheim
38.
Zurück zum Zitat Lu Y, Welsch JP, Swartz JR (2014) Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 111:125–130CrossRef Lu Y, Welsch JP, Swartz JR (2014) Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 111:125–130CrossRef
39.
Zurück zum Zitat Ng PP, Jia M, Patel KG, Brody JD, Swartz JR et al (2012) A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proc Natl Acad Sci U S A 109:14526–14531CrossRef Ng PP, Jia M, Patel KG, Brody JD, Swartz JR et al (2012) A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proc Natl Acad Sci U S A 109:14526–14531CrossRef
40.
Zurück zum Zitat Takeda H, Ogasawara T, Ozawa T, Muraguchi A, Jih P-J et al (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 5:11333CrossRef Takeda H, Ogasawara T, Ozawa T, Muraguchi A, Jih P-J et al (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 5:11333CrossRef
41.
Zurück zum Zitat Yin G, Garces ED, Yang J, Zhang J, Tran C et al (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 4:217–225CrossRef Yin G, Garces ED, Yang J, Zhang J, Tran C et al (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 4:217–225CrossRef
42.
Zurück zum Zitat Zawada JF, Yin G, Steiner AR, Yang J, Naresh A et al (2011) Microscale to manufacturing scale-up of cell-free cytokine production - a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578CrossRef Zawada JF, Yin G, Steiner AR, Yang J, Naresh A et al (2011) Microscale to manufacturing scale-up of cell-free cytokine production - a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578CrossRef
43.
Zurück zum Zitat Molla A, Paul AV, Wimmer E (1991) Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651CrossRef Molla A, Paul AV, Wimmer E (1991) Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651CrossRef
44.
Zurück zum Zitat Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E et al (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787CrossRef Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E et al (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787CrossRef
45.
Zurück zum Zitat Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018CrossRef Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018CrossRef
46.
Zurück zum Zitat Kwon YC, Jewett M (2015) High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 5:8663CrossRef Kwon YC, Jewett M (2015) High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 5:8663CrossRef
47.
Zurück zum Zitat Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A et al (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709 Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A et al (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709
48.
Zurück zum Zitat Liu C, Kelly GT, Watanabe CMH (2006) In vitro biosynthesis of the antitumor agent azinomycin B. Org Lett 8:1065–1068CrossRef Liu C, Kelly GT, Watanabe CMH (2006) In vitro biosynthesis of the antitumor agent azinomycin B. Org Lett 8:1065–1068CrossRef
49.
50.
Zurück zum Zitat Krauser S, Weyler C, Blaß LK, Heinzle E (2013) Directed multistep biocatalysis using tailored permeabilized cells. Adv Biochem Eng/Biotechnol 137:185–234CrossRef Krauser S, Weyler C, Blaß LK, Heinzle E (2013) Directed multistep biocatalysis using tailored permeabilized cells. Adv Biochem Eng/Biotechnol 137:185–234CrossRef
51.
Zurück zum Zitat Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677 Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677
52.
Zurück zum Zitat Zhang Y-HP, Sun J, Zhong J-J (2010) Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol 21:663–669CrossRef Zhang Y-HP, Sun J, Zhong J-J (2010) Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol 21:663–669CrossRef
53.
Zurück zum Zitat Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Plant Biol 26:54–61CrossRef Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Plant Biol 26:54–61CrossRef
54.
Zurück zum Zitat Liu Z, Zhang J, Chen X, Wang PG (2002) Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads. ChemBioChem 3:348–355CrossRef Liu Z, Zhang J, Chen X, Wang PG (2002) Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads. ChemBioChem 3:348–355CrossRef
55.
Zurück zum Zitat Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 3:499–511CrossRef Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 3:499–511CrossRef
56.
Zurück zum Zitat Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2011) Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc 133:297–304CrossRef Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2011) Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc 133:297–304CrossRef
57.
Zurück zum Zitat Wang HH, Huang P-Y, Xu G, Haas W, Marblestone A et al (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol 1:43–52CrossRef Wang HH, Huang P-Y, Xu G, Haas W, Marblestone A et al (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol 1:43–52CrossRef
58.
Zurück zum Zitat Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nat Biotechnol 460:894–898 Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nat Biotechnol 460:894–898
59.
Zurück zum Zitat Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485CrossRef Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485CrossRef
60.
Zurück zum Zitat Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell free systems: Implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389 Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell free systems: Implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389
61.
Zurück zum Zitat Billerbeck S, Dietz S, Morgado G, Panke S (2012) Technologies for biosystems engineering. In: Wittmann C, Lee SY (eds) Systems metabolic engineering. Springer, Dordrecht, pp 83–115CrossRef Billerbeck S, Dietz S, Morgado G, Panke S (2012) Technologies for biosystems engineering. In: Wittmann C, Lee SY (eds) Systems metabolic engineering. Springer, Dordrecht, pp 83–115CrossRef
62.
Zurück zum Zitat Brockman IM, Prather KLJ (2015) Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng 28:104–113CrossRef Brockman IM, Prather KLJ (2015) Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng 28:104–113CrossRef
63.
Zurück zum Zitat McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–708CrossRef McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–708CrossRef
64.
Zurück zum Zitat Taxis C, Stier G, Spadaccini R, Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:267CrossRef Taxis C, Stier G, Spadaccini R, Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:267CrossRef
65.
Zurück zum Zitat Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S (2013) Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. ChemBioChem 14:2310–2321CrossRef Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S (2013) Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. ChemBioChem 14:2310–2321CrossRef
66.
Zurück zum Zitat Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759CrossRef Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759CrossRef
67.
Zurück zum Zitat Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY et al (2011) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889CrossRef Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY et al (2011) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889CrossRef
68.
Zurück zum Zitat Sachdeva G, Garg A, Godding D, Way JC, Silver PA et al (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503CrossRef Sachdeva G, Garg A, Godding D, Way JC, Silver PA et al (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503CrossRef
69.
Zurück zum Zitat Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554CrossRef Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554CrossRef
70.
Zurück zum Zitat You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787–8790CrossRef You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787–8790CrossRef
71.
Zurück zum Zitat Yao AI, Fenton TA, Owsley K, Seitzer P, Larsen DJ et al (2013) Promoter element arising from the fusion of standard BioBricks parts. ACS Synth Biol 2:111–120CrossRef Yao AI, Fenton TA, Owsley K, Seitzer P, Larsen DJ et al (2013) Promoter element arising from the fusion of standard BioBricks parts. ACS Synth Biol 2:111–120CrossRef
72.
Zurück zum Zitat Kittleson JT, Wu GC, Anderson JC (2012) Successes and failures in modular genetic engineering. Curr Opin Chem Biol 16:329–336CrossRef Kittleson JT, Wu GC, Anderson JC (2012) Successes and failures in modular genetic engineering. Curr Opin Chem Biol 16:329–336CrossRef
73.
Zurück zum Zitat Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866CrossRef Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866CrossRef
74.
Zurück zum Zitat Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN (2013) Computational enzyme design. Angew Chem Int Ed 52:5700–5725CrossRef Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN (2013) Computational enzyme design. Angew Chem Int Ed 52:5700–5725CrossRef
75.
Zurück zum Zitat Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed 54:3351–3367CrossRef Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed 54:3351–3367CrossRef
76.
Zurück zum Zitat Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Progr 15:296–303CrossRef Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Progr 15:296–303CrossRef
77.
Zurück zum Zitat Hold C, Panke S (2009) Towards the engineering of in vitro systems. J R Chem Soc Interface 6:S507–S521CrossRef Hold C, Panke S (2009) Towards the engineering of in vitro systems. J R Chem Soc Interface 6:S507–S521CrossRef
78.
Zurück zum Zitat Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202CrossRef Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202CrossRef
79.
Zurück zum Zitat Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34C:135–141CrossRef Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34C:135–141CrossRef
80.
Zurück zum Zitat Pasotti L, Zucca S (2014) Advances and computational tools towards predictable design in biological engineering. Comput Math Methods Med 2014:369681CrossRef Pasotti L, Zucca S (2014) Advances and computational tools towards predictable design in biological engineering. Comput Math Methods Med 2014:369681CrossRef
81.
Zurück zum Zitat Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M et al (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43:D439–D446CrossRef Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M et al (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43:D439–D446CrossRef
82.
Zurück zum Zitat Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK et al (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38:D396–D400CrossRef Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK et al (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38:D396–D400CrossRef
83.
Zurück zum Zitat Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982CrossRef Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982CrossRef
84.
Zurück zum Zitat Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205CrossRef Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205CrossRef
85.
Zurück zum Zitat Kumar A, Suthers PF, Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf 13:6CrossRef Kumar A, Suthers PF, Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf 13:6CrossRef
86.
Zurück zum Zitat Bujara M, Panke S (2012) In silico assessment of cell-free systems. Biotechnol Bioeng 109:2620–2629CrossRef Bujara M, Panke S (2012) In silico assessment of cell-free systems. Biotechnol Bioeng 109:2620–2629CrossRef
87.
Zurück zum Zitat Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD et al (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609CrossRef Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD et al (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609CrossRef
88.
Zurück zum Zitat Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, 6th edn. Academic Press, San Diego Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, 6th edn. Academic Press, San Diego
89.
Zurück zum Zitat Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104:1086–1097CrossRef Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104:1086–1097CrossRef
90.
Zurück zum Zitat Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 109:572–582CrossRef Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 109:572–582CrossRef
91.
Zurück zum Zitat Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35CrossRef Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35CrossRef
92.
Zurück zum Zitat Carbonell P, Planson A-G, Fichera D, Faulon J-L (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122CrossRef Carbonell P, Planson A-G, Fichera D, Faulon J-L (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122CrossRef
93.
Zurück zum Zitat Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRef
94.
Zurück zum Zitat Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158CrossRef Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158CrossRef
95.
Zurück zum Zitat Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinf 5:76CrossRef Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinf 5:76CrossRef
96.
Zurück zum Zitat Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556CrossRef Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556CrossRef
97.
Zurück zum Zitat Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473 Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473
98.
Zurück zum Zitat Jones JA, Toparlak ÖD, Koffas MA (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59CrossRef Jones JA, Toparlak ÖD, Koffas MA (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59CrossRef
99.
Zurück zum Zitat Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169CrossRef Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169CrossRef
100.
Zurück zum Zitat Ninh PH, Honda K, Sakai T, Okano K, Ohtake H (2015) Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol Bioeng 112:189–196CrossRef Ninh PH, Honda K, Sakai T, Okano K, Ohtake H (2015) Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol Bioeng 112:189–196CrossRef
101.
Zurück zum Zitat Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277CrossRef Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277CrossRef
102.
Zurück zum Zitat Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793CrossRef Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793CrossRef
103.
Zurück zum Zitat Knight T (2003) Idempotent vector design for standard assembly of Biobricks. Massachussetts Institute of Technology, CambridgeCrossRef Knight T (2003) Idempotent vector design for standard assembly of Biobricks. Massachussetts Institute of Technology, CambridgeCrossRef
104.
Zurück zum Zitat Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY et al (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550CrossRef Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY et al (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550CrossRef
105.
Zurück zum Zitat Myers C, Clancy K, Misirli G, Oberortner E, Pocock M et al (2015) The synthetic biology open language. Methods Mol Biol 1244:323–336CrossRef Myers C, Clancy K, Misirli G, Oberortner E, Pocock M et al (2015) The synthetic biology open language. Methods Mol Biol 1244:323–336CrossRef
106.
Zurück zum Zitat Martínez-García E, Aparicio T, Goñi-Moreno A, Fraile S, de Lorenzo V (2014) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res 43:D1193–D1198 Martínez-García E, Aparicio T, Goñi-Moreno A, Fraile S, de Lorenzo V (2014) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res 43:D1193–D1198
107.
Zurück zum Zitat Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675CrossRef Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675CrossRef
108.
Zurück zum Zitat Mayer MP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46CrossRef Mayer MP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46CrossRef
109.
Zurück zum Zitat French C, Ward JM (1996) Production and modification of E. coli transketolase for large-scale biocatalysis. Ann N Y Acad Sci 799:11–18CrossRef French C, Ward JM (1996) Production and modification of E. coli transketolase for large-scale biocatalysis. Ann N Y Acad Sci 799:11–18CrossRef
110.
Zurück zum Zitat Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng/Biotechnol 86:47–82CrossRef Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng/Biotechnol 86:47–82CrossRef
111.
Zurück zum Zitat Uhlin BE, Nordström K (1977) R plasmid gene dosage effects in Escherichia coli K-12: copy mutants of the R plasmid R1drd-19. Plasmid 1:1–7CrossRef Uhlin BE, Nordström K (1977) R plasmid gene dosage effects in Escherichia coli K-12: copy mutants of the R plasmid R1drd-19. Plasmid 1:1–7CrossRef
112.
Zurück zum Zitat Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41:3471–3481CrossRef Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41:3471–3481CrossRef
113.
Zurück zum Zitat Chappell J, Freemont P (2013) In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements. Methods Mol Biol 1073:61–74CrossRef Chappell J, Freemont P (2013) In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements. Methods Mol Biol 1073:61–74CrossRef
114.
Zurück zum Zitat Davidson EA, van Blarcom T, Levy M, Ellington AD (2010) Emulsion based selection of T7 promoters of varying activity. In: Pacific symposium on biocomputing. 2010, World Scientific, pp 433–443 Davidson EA, van Blarcom T, Levy M, Ellington AD (2010) Emulsion based selection of T7 promoters of varying activity. In: Pacific symposium on biocomputing. 2010, World Scientific, pp 433–443
115.
Zurück zum Zitat Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141CrossRef Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141CrossRef
116.
Zurück zum Zitat Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J et al (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4CrossRef Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J et al (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4CrossRef
117.
Zurück zum Zitat Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRef Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616CrossRef
118.
Zurück zum Zitat Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 41:10668–10678CrossRef Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 41:10668–10678CrossRef
119.
Zurück zum Zitat Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40, e142CrossRef Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40, e142CrossRef
120.
Zurück zum Zitat Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87 Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87
121.
Zurück zum Zitat Qin X, Qian J, Yao G, Zhuang Y, Zhang S et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608CrossRef Qin X, Qian J, Yao G, Zhuang Y, Zhang S et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608CrossRef
122.
Zurück zum Zitat Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683CrossRef Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683CrossRef
123.
Zurück zum Zitat Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK et al (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29CrossRef Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK et al (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29CrossRef
124.
Zurück zum Zitat Seo SW, Yang J-S, Kim I, Yang J, Min BE et al (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74CrossRef Seo SW, Yang J-S, Kim I, Yang J, Min BE et al (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74CrossRef
125.
Zurück zum Zitat Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950CrossRef Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950CrossRef
126.
Zurück zum Zitat Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634CrossRef Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634CrossRef
127.
Zurück zum Zitat Borujeni AE, Channarasappa AS, Salis HM (2013) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659CrossRef Borujeni AE, Channarasappa AS, Salis HM (2013) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659CrossRef
128.
Zurück zum Zitat de Smit MH, Van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 87:7668–7672CrossRef de Smit MH, Van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 87:7668–7672CrossRef
129.
Zurück zum Zitat Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M et al (2014) Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Mol Syst Biol 10:731CrossRef Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M et al (2014) Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Mol Syst Biol 10:731CrossRef
130.
Zurück zum Zitat Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U et al (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res 41, e98CrossRef Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U et al (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res 41, e98CrossRef
131.
Zurück zum Zitat Nowroozi FF, Baidoo EEK, Ermakov S, Redding-Johanson AM, Batth TS et al (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Environ Microbiol 98:1567–1581 Nowroozi FF, Baidoo EEK, Ermakov S, Redding-Johanson AM, Batth TS et al (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Environ Microbiol 98:1567–1581
132.
Zurück zum Zitat Ng CY, Farasat I, Maranas CD, Salis HM (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 29:86–96CrossRef Ng CY, Farasat I, Maranas CD, Salis HM (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 29:86–96CrossRef
133.
Zurück zum Zitat Xu P, Gu Q, Wang W, Wong L, Bower AGW et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409 Xu P, Gu Q, Wang W, Wong L, Bower AGW et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409
134.
Zurück zum Zitat Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82CrossRef Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82CrossRef
135.
Zurück zum Zitat Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418CrossRef Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418CrossRef
136.
Zurück zum Zitat Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai Q-A et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148CrossRef Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai Q-A et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148CrossRef
137.
Zurück zum Zitat Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K et al (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664CrossRef Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K et al (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664CrossRef
138.
Zurück zum Zitat Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109:7085–7090CrossRef Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109:7085–7090CrossRef
139.
Zurück zum Zitat Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244CrossRef Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244CrossRef
140.
Zurück zum Zitat Chao R, Yuan Y, Zhao H (2015) Recent advances in DNA assembly technologies. FEMS Yeast Res 15:1–9CrossRef Chao R, Yuan Y, Zhao H (2015) Recent advances in DNA assembly technologies. FEMS Yeast Res 15:1–9CrossRef
141.
Zurück zum Zitat Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1CrossRef Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1CrossRef
142.
Zurück zum Zitat Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647CrossRef Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647CrossRef
143.
Zurück zum Zitat Shetty RP, Endy D, Jr TFK (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5CrossRef Shetty RP, Endy D, Jr TFK (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5CrossRef
144.
Zurück zum Zitat Densmore D, Hsiau TH-C, Kittleson JT, DeLoache W, Batten C et al (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38:2607–2616CrossRef Densmore D, Hsiau TH-C, Kittleson JT, DeLoache W, Batten C et al (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38:2607–2616CrossRef
145.
Zurück zum Zitat Leguia M, Brophy J, Densmore D, Anderson JC (2011) Automated assembly of standard biological parts. Methods Enzymol 498:363–397CrossRef Leguia M, Brophy J, Densmore D, Anderson JC (2011) Automated assembly of standard biological parts. Methods Enzymol 498:363–397CrossRef
146.
Zurück zum Zitat Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3:38–43 Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3:38–43
147.
Zurück zum Zitat Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441CrossRef Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441CrossRef
148.
Zurück zum Zitat Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59CrossRef Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59CrossRef
149.
Zurück zum Zitat Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRef Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345CrossRef
150.
Zurück zum Zitat Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251CrossRef Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251CrossRef
151.
Zurück zum Zitat Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R et al (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992–2002CrossRef Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R et al (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992–2002CrossRef
152.
Zurück zum Zitat Schmid-Burgk JL, Xie Z, Benenson Y (2014) Hierarchical ligation-independent assembly of PCR fragments. Methods Mol Biol 1116:49–58CrossRef Schmid-Burgk JL, Xie Z, Benenson Y (2014) Hierarchical ligation-independent assembly of PCR fragments. Methods Mol Biol 1116:49–58CrossRef
153.
Zurück zum Zitat Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50:589–600CrossRef Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50:589–600CrossRef
154.
Zurück zum Zitat Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216CrossRef Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216CrossRef
155.
Zurück zum Zitat Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990CrossRef Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990CrossRef
156.
Zurück zum Zitat Robzyk K, Kassir Y (1992) A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20:3790CrossRef Robzyk K, Kassir Y (1992) A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20:3790CrossRef
157.
Zurück zum Zitat Gibson DG, Benders G, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al (2008) Complete chemical synthesis, assembly, and cloning of a Mcyoplasma genitalium genome. Science 319:1215–1220CrossRef Gibson DG, Benders G, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al (2008) Complete chemical synthesis, assembly, and cloning of a Mcyoplasma genitalium genome. Science 319:1215–1220CrossRef
158.
Zurück zum Zitat Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79:931–941CrossRef Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79:931–941CrossRef
159.
Zurück zum Zitat Bradley LH, Bricken ML, Randle C (2011) Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. Protein Expr Purif 75:186–191CrossRef Bradley LH, Bricken ML, Randle C (2011) Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. Protein Expr Purif 75:186–191CrossRef
160.
Zurück zum Zitat Tikhonova EB, Ethayathulla AS, Su Y, Hariharan P, Xie S et al (2015) A transcription blocker isolated from a designed repeat protein combinatorial library by in vivo functional screen. Sci Rep 5:8070CrossRef Tikhonova EB, Ethayathulla AS, Su Y, Hariharan P, Xie S et al (2015) A transcription blocker isolated from a designed repeat protein combinatorial library by in vivo functional screen. Sci Rep 5:8070CrossRef
161.
Zurück zum Zitat Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176CrossRef Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176CrossRef
162.
Zurück zum Zitat Wang J, Sarov M, Rientjes J, Fu J, Hollak H et al (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 32:43–53CrossRef Wang J, Sarov M, Rientjes J, Fu J, Hollak H et al (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 32:43–53CrossRef
163.
Zurück zum Zitat He AS, Rohatgi PR, Hersh MN, Rosenberg SM (2006) Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair 5:258–273CrossRef He AS, Rohatgi PR, Hersh MN, Rosenberg SM (2006) Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair 5:258–273CrossRef
164.
Zurück zum Zitat Wang HH, Kim H, Cong L, Jeong J, Bang D et al (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593CrossRef Wang HH, Kim H, Cong L, Jeong J, Bang D et al (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593CrossRef
165.
Zurück zum Zitat Ronda C, Pedersen LE, Sommer MOA, Nielsen AT (2016) CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6:19452CrossRef Ronda C, Pedersen LE, Sommer MOA, Nielsen AT (2016) CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6:19452CrossRef
166.
Zurück zum Zitat Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256CrossRef Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256CrossRef
167.
Zurück zum Zitat DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRef DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474CrossRef
Metadaten
Titel
Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks
verfasst von
Gaspar Morgado
Daniel Gerngross
Tania M. Roberts
Sven Panke
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/10_2016_13