Skip to main content

Über dieses Buch

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science.
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification.
In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.



Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis

To date, the two systems most extensively used for noncanonical amino acid (ncAA) incorporation via orthogonal translation are based on the Methanococcus jannaschii TyrRS/tRNACUATyr and the Methanosarcina barkeri/Methanosarcina mazei PylRS/tRNACUAPyl pairs. Here, we summarize the development and usage of the pyrrolysine-based system for orthogonal translation, a process that allows for the recombinant production of site-specifically labeled proteins and peptides. Via stop codon suppression in Escherichia coli and mammalian cells, genetically encoded biomolecules can be equipped with a great diversity of chemical functionalities including click chemistry handles, post-translational modifications, and photocaged sidechains.

Tobias Baumann, Matthias Exner, Nediljko Budisa

Promoter and Terminator Discovery and Engineering

Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements. Specifically, early strategies have focused largely on semi-rational techniques such as saturation mutagenesis to diversify native promoters and terminators. Next, in an effort to reduce the length of the synthetic biology design cycle, efforts in the field have turned towards the rational design of synthetic promoters and terminators. In this vein, we cover recently developed methods such as hybrid engineering, high throughput characterization, and thermodynamic modeling which allow finer control in the rational design of novel promoters and terminators. Emphasis is placed on the methodologies used and this chapter showcases the utility of these methods across multiple host organisms.

Matthew Deaner, Hal S. Alper

Engineering Biomolecular Switches for Dynamic Metabolic Control

Living organisms have been exploited as production hosts for a large variety of compounds. To improve the efficiency of bioproduction, metabolic pathways in an organism are usually manipulated by various genetic modifications. However, bottlenecks during the conversion of substrate to a desired product may result from cellular regulations at different levels. Dynamic regulation of metabolic pathways according to the need of cultivation process is therefore essential for developing effective bioprocesses, but represents a major challenge in metabolic engineering and synthetic biology. To this end, switchable biomolecules which can sense the intracellular concentrations of metabolites with different response types and dynamic ranges are of great interest. This chapter summarizes recent progress in the development of biomolecular switches and their applications for improvement of bioproduction via dynamic control of metabolic fluxes. Further studies of bioswitches and their applications in industrial strain development are also discussed.

Cheng-Wei Ma, Li-Bang Zhou, An-Ping Zeng

Pathway Design, Engineering, and Optimization

The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

Eva Garcia-Ruiz, Mohammad HamediRad, Huimin Zhao

Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks

Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).

Gaspar Morgado, Daniel Gerngross, Tania M. Roberts, Sven Panke

Synthetic Biology of Polyhydroxyalkanoates (PHA)

Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

De-Chuan Meng, Guo-Qiang Chen

Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals

To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker’s yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

Timothy L. Turner, Heejin Kim, In Iok Kong, Jing-Jing Liu, Guo-Chang Zhang, Yong-Su Jin

Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering

Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

Judith Becker, Gideon Gießelmann, Sarah Lisa Hoffmann, Christoph Wittmann

Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production

Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

Weihua Guo, Jiayuan Sheng, Xueyang Feng

Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms

The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same “letters” or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate “new” version(s) of the genetic code derived from the “old” biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.

Markus Schmidt, Lei Pei, Nediljko Budisa


Weitere Informationen

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.



Systemische Notwendigkeit zur Weiterentwicklung von Hybridnetzen

Die Entwicklung des mitteleuropäischen Energiesystems und insbesondere die Weiterentwicklung der Energieinfrastruktur sind konfrontiert mit einer stetig steigenden Diversität an Herausforderungen, aber auch mit einer zunehmenden Komplexität in den Lösungsoptionen. Vor diesem Hintergrund steht die Weiterentwicklung von Hybridnetzen symbolisch für das ganze sich in einer Umbruchsphase befindliche Energiesystem: denn der Notwendigkeit einer Schaffung und Bildung der Hybridnetze aus systemischer und volkswirtschaftlicher Perspektive steht sozusagen eine Komplexitätsfalle gegenüber, mit der die Branche in der Vergangenheit in dieser Intensität nicht konfrontiert war. Jetzt gratis downloaden!