Skip to main content

2011 | OriginalPaper | Buchkapitel

2. System-Level and Architectural Trade-offs

verfasst von : Dr. Emanuele Lopelli, Dr. Johan van der Tang, Prof. Arthur van Roermund

Erschienen in: Architectures and Synthesizers for Ultra-low Power Fast Frequency-Hopping WSN Radios

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on high level design of ultra-low power wireless nodes. First, different system architectures are compared in order to assess advantages and drawbacks of each architecture from a power consumption point of view. Second, different modulation formats are compared and an optimal data-rate is chosen in order to minimize the average power consumption of the node. Finally, the most common transmitter and receiver architectures are reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For example if the hopping rate is three times the data-rate, then 2 errors will cause a bit error. For a hopping rate 5 times the data-rate, 3 errors are necessary to cause a bit error.
 
2
As it will be proven in Chap. 3 the serial acquisition technique is the most power efficient algorithm for PNC acquisition.
 
3
The remaining part of the synchronization consists in what is generally called tracking. During tracking, the phase difference between the two PNCs is reduced to virtually zero from a closed-loop system (like a PLL). This system also tracks any instantaneous variation of the phase of the transmitter PNC in order to assure a constantly aligned PN sequences between the transmitter and the receiver when the nodes are communicating with each other.
 
4
With the word “ideal” here it is supposed that the channel is AWGN.
 
5
The 2-FSK noise bandwidth can be approximated by the Carson rule as B noise=2(Δf+f m) where \({f_{\mathrm{m}}}=\frac{2}{{T_{\mathrm{s}}}}\) with \(\frac{1}{{T_{\mathrm {s}}}}\) the data rate and Δf the frequency deviation.
 
6
For a 2-FSK modulated signal it equals four times the data rate.
 
7
External components require in general matching to 50 Ω. This means that the stage preceding the external component must be able to drive a 50 Ω impedance. Such a low impedance level will cost a high current consumption.
 
8
Considering a required sensitivity level of −76.5 dBm at 2.4 GHz, then the signal at the output of an LNA with gain equal to 15 dB is generally smaller than 1 mV rms.
 
Literatur
17.
Zurück zum Zitat P. Heydari, A study of low-power ultra wideband radio transceiver architectures, in Wireless Communications and Networking Conference, Mar. 2005, pp. 758–763 P. Heydari, A study of low-power ultra wideband radio transceiver architectures, in Wireless Communications and Networking Conference, Mar. 2005, pp. 758–763
18.
Zurück zum Zitat I.D. O’Donnell, R.W. Brodersen, An ultra-wideband transceiver architecture for low power, low rate, wireless systems. IEEE Trans. Veh. Technol. 54, 1623–1631 (2005) CrossRef I.D. O’Donnell, R.W. Brodersen, An ultra-wideband transceiver architecture for low power, low rate, wireless systems. IEEE Trans. Veh. Technol. 54, 1623–1631 (2005) CrossRef
19.
Zurück zum Zitat R.H.T. Bates, G.A. Burrell, Towards faithful radio transmission of very wideband signals. IEEE Trans. Antennas Propag. AP-20, 684–690 (1972) CrossRef R.H.T. Bates, G.A. Burrell, Towards faithful radio transmission of very wideband signals. IEEE Trans. Antennas Propag. AP-20, 684–690 (1972) CrossRef
20.
Zurück zum Zitat J. Ryckaert et al., Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation. IEEE Trans. Circuits and Syst. I 52, 2515–2525 (2005) CrossRef J. Ryckaert et al., Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation. IEEE Trans. Circuits and Syst. I 52, 2515–2525 (2005) CrossRef
21.
Zurück zum Zitat L. Stoica et al., An ultrawideband system architecture for tag based wireless sensor networks. IEEE Trans. Veh. Technol. 54, 1632–1645 (2005) CrossRef L. Stoica et al., An ultrawideband system architecture for tag based wireless sensor networks. IEEE Trans. Veh. Technol. 54, 1632–1645 (2005) CrossRef
22.
Zurück zum Zitat J.-P. Curty et al., Remotely powered addressable UHF RFID integrated system. IEEE J. Solid-State Circuits 40, 2193–2202 (2005) CrossRef J.-P. Curty et al., Remotely powered addressable UHF RFID integrated system. IEEE J. Solid-State Circuits 40, 2193–2202 (2005) CrossRef
23.
Zurück zum Zitat R.G. Vaughan, N.L. Scott, D.R. White, The theory of bandpass sampling. IEEE Trans. Signal Process. 39, 1973–1984 (1991) CrossRef R.G. Vaughan, N.L. Scott, D.R. White, The theory of bandpass sampling. IEEE Trans. Signal Process. 39, 1973–1984 (1991) CrossRef
24.
Zurück zum Zitat M.R. Yuce, W. Liu, A low-power multirate differential PSK receiver for space applications. IEEE Trans. Veh. Technol. 54, 2074–2084 (2005) CrossRef M.R. Yuce, W. Liu, A low-power multirate differential PSK receiver for space applications. IEEE Trans. Veh. Technol. 54, 2074–2084 (2005) CrossRef
25.
Zurück zum Zitat B. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX super-regenerative transceiver for wireless sensor networks, in IEEE International Solid-State Circuits Conf. (ISSCC), Feb. 2005, pp. 396–397 B. Otis, Y.H. Chee, J. Rabaey, A 400 μW-RX, 1.6 mW-TX super-regenerative transceiver for wireless sensor networks, in IEEE International Solid-State Circuits Conf. (ISSCC), Feb. 2005, pp. 396–397
26.
Zurück zum Zitat A. Vouilloz, M. Declercq, C. Dehollain, A low-power CMOS super-regenerative receiver at 1 GHz. IEEE J. Solid-State Circuits 36, 440–451 (2001) CrossRef A. Vouilloz, M. Declercq, C. Dehollain, A low-power CMOS super-regenerative receiver at 1 GHz. IEEE J. Solid-State Circuits 36, 440–451 (2001) CrossRef
27.
Zurück zum Zitat A. Kamerman, Spread-spectrum techniques drive WLAN performance. Microwaves RF Sept., 109–114 (1996) A. Kamerman, Spread-spectrum techniques drive WLAN performance. Microwaves RF Sept., 109–114 (1996)
28.
Zurück zum Zitat R.E. Ziemer, R.L. Peterson, D.E. Borth, Introduction to Spread Spectrum Communications (Prentice Hall, Upper Saddle River, 1995) R.E. Ziemer, R.L. Peterson, D.E. Borth, Introduction to Spread Spectrum Communications (Prentice Hall, Upper Saddle River, 1995)
29.
Zurück zum Zitat J.D. Oetting, A comparison of modulation techniques for digital radio. IEEE Trans. Commun. 27, 1752–1762 (1979) MATHCrossRef J.D. Oetting, A comparison of modulation techniques for digital radio. IEEE Trans. Commun. 27, 1752–1762 (1979) MATHCrossRef
30.
Zurück zum Zitat E. Lopelli, J.D. van der Tang, A.H.M. van Roermund, A 1 mA ultra-low-power FHSS TX front-end utilizing direct modulation with digital pre-distortion. IEEE J. Solid-State Circuits 42, 2212–2223 (2007) CrossRef E. Lopelli, J.D. van der Tang, A.H.M. van Roermund, A 1 mA ultra-low-power FHSS TX front-end utilizing direct modulation with digital pre-distortion. IEEE J. Solid-State Circuits 42, 2212–2223 (2007) CrossRef
31.
Zurück zum Zitat E. Lopelli, J. van der Tang, A. van Roermund, Ultra-low power frequency-hopping spread spectrum transmitters and receivers, in 15th Workshop on Advances in Analog Circuit Design, Apr. 2006 E. Lopelli, J. van der Tang, A. van Roermund, Ultra-low power frequency-hopping spread spectrum transmitters and receivers, in 15th Workshop on Advances in Analog Circuit Design, Apr. 2006
32.
Zurück zum Zitat B. Razavi, RF transmitter architectures and circuits, in IEEE Custom Integrated Circuits Conf. (CICC), May 1999, pp. 197–204 B. Razavi, RF transmitter architectures and circuits, in IEEE Custom Integrated Circuits Conf. (CICC), May 1999, pp. 197–204
33.
Zurück zum Zitat L. Yang, C. Shuqing, R.W. Dutton, Numerical investigation of low frequency noise in MOSFETs with high-k gate stacks, in International Conference on Simulation of Semiconductor Processes and Devices, Sept. 2006, pp. 99–102 L. Yang, C. Shuqing, R.W. Dutton, Numerical investigation of low frequency noise in MOSFETs with high-k gate stacks, in International Conference on Simulation of Semiconductor Processes and Devices, Sept. 2006, pp. 99–102
Metadaten
Titel
System-Level and Architectural Trade-offs
verfasst von
Dr. Emanuele Lopelli
Dr. Johan van der Tang
Prof. Arthur van Roermund
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0183-0_2

Neuer Inhalt