Skip to main content
Erschienen in: Journal of Materials Science 18/2015

01.09.2015 | Original Paper

Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: Rh2Si n q (n = 1–10; q = 0, ±1)

verfasst von: Shuai Zhang, Yu Zhang, Xingqiang Yang, Cheng Lu, Genquan Li, Zhiwen Lu

Erschienen in: Journal of Materials Science | Ausgabe 18/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A systematic investigation of rhodium-doped silicon clusters, Rh2Si n q with n = 1–10 and q = 0, ±1, in the neutral, anionic, and cationic states is performed using density functional theory approach at B3LYP/GENECP level. According to the optimum Rh2Si n q clusters, mostly equilibrium geometries prefer the three-dimensional structures for n = 2–10. When n = 10, one Rh atom in Rh2Si 10 0,±1 clusters completely falls into the center of Si frame, and cage-like Rh2Si 10 0,±1 geometries are formed. The Rh2Si 1,6–9 + and Rh2Si 5,7,9 clusters significantly deform their corresponding neutral geometries, which are in line with the calculated ionization potential and electron affinity values. The relative stabilities of Rh2Si n q clusters for the lowest-energy structures are analyzed on the basis of binding energy, fragmentation energy, second-order energy difference, and HOMO–LUMO gaps. The theoretical results confirm that the Rh2Si6 , Rh2Si6, and Rh2Si6 + clusters are more stable than their neighboring ones. The natural population analysis reveals that the charges in Rh2Si n q clusters transfer from the Si atoms to the Rh atoms except Rh2Si+. In addition, the relationship between static polarizability and HOMO–LUMO gaps is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin- (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J Am Chem Soc 131(30):10783–10790CrossRef Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin- (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J Am Chem Soc 131(30):10783–10790CrossRef
2.
Zurück zum Zitat Xie L, Li WL, Romanescu C, Huang X, Wang LS (2013) A photoelectron spectroscopy and density functional study of di-tantalum boride clusters: Ta2B x − (x = 2–5). J Chem Phys 138(3):034308/1–034308/11CrossRef Xie L, Li WL, Romanescu C, Huang X, Wang LS (2013) A photoelectron spectroscopy and density functional study of di-tantalum boride clusters: Ta2B x (x = 2–5). J Chem Phys 138(3):034308/1–034308/11CrossRef
5.
Zurück zum Zitat Beyer MK, Knickelbein MB (2007) Electric deflection studies of rhodium clusters. J Chem Phys 126(10):104301/1–104301/7CrossRef Beyer MK, Knickelbein MB (2007) Electric deflection studies of rhodium clusters. J Chem Phys 126(10):104301/1–104301/7CrossRef
6.
Zurück zum Zitat Götz DA, Heiles S, Schäfer R (2012) Polarizabilities of SiN (N = 8–75) clusters from molecular beam electric deflection experiments. Eur Phys J D 66:293/1–293/4CrossRef Götz DA, Heiles S, Schäfer R (2012) Polarizabilities of SiN (N = 8–75) clusters from molecular beam electric deflection experiments. Eur Phys J D 66:293/1–293/4CrossRef
7.
Zurück zum Zitat Ju M, Lv J, Kuang XY, Ding LP, Lu C, Wang JJ, Jin YY, Maroulis G (2015) Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ (n = 1–8, μ = 0, ±1): insights and perspectives. RSC Adv 5(9):6560–6570CrossRef Ju M, Lv J, Kuang XY, Ding LP, Lu C, Wang JJ, Jin YY, Maroulis G (2015) Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ (n = 1–8, μ = 0, ±1): insights and perspectives. RSC Adv 5(9):6560–6570CrossRef
8.
Zurück zum Zitat Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127(14):4998–4999CrossRef Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127(14):4998–4999CrossRef
9.
Zurück zum Zitat Reveles JU, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74(3):035435/1–035435/6 Reveles JU, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74(3):035435/1–035435/6
10.
Zurück zum Zitat Li YJ, Tam NM, Claes P, Woodham AP, Lyon JT, Ngan VT, Nguyen MT, Lievens P, Fielicke A, Janssens E (2014) Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si n Co (n = 10–12). J Phys Chem A 118(37):8198–8203CrossRef Li YJ, Tam NM, Claes P, Woodham AP, Lyon JT, Ngan VT, Nguyen MT, Lievens P, Fielicke A, Janssens E (2014) Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si n Co (n = 10–12). J Phys Chem A 118(37):8198–8203CrossRef
11.
Zurück zum Zitat Kong XY, Xu HG, Zheng WJ (2012) Structures and magnetic properties of CrSi n − (n = 3–12) clusters: photoelectron spectroscopy and density functional calculations. J Chem Phys 137(6):064307/1–064307/9CrossRef Kong XY, Xu HG, Zheng WJ (2012) Structures and magnetic properties of CrSi n (n = 3–12) clusters: photoelectron spectroscopy and density functional calculations. J Chem Phys 137(6):064307/1–064307/9CrossRef
12.
Zurück zum Zitat Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86(9):1733–1736CrossRef Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86(9):1733–1736CrossRef
13.
Zurück zum Zitat Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon. J Phys Chem A 111(1):42–49CrossRef Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon. J Phys Chem A 111(1):42–49CrossRef
14.
Zurück zum Zitat Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined Far-Infrared spectroscopic and computational study. J Am Chem Soc 132(44):15589–15602CrossRef Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined Far-Infrared spectroscopic and computational study. J Am Chem Soc 132(44):15589–15602CrossRef
15.
Zurück zum Zitat Ngan VT, Janssens E, Claes P, Lyon JY, Fielicke A, Nguyen MT, Lievens P (2012) High magnetic moments in manganese-doped silicon clusters. Chem Eur J 18(39):15788–15793CrossRef Ngan VT, Janssens E, Claes P, Lyon JY, Fielicke A, Nguyen MT, Lievens P (2012) High magnetic moments in manganese-doped silicon clusters. Chem Eur J 18(39):15788–15793CrossRef
16.
Zurück zum Zitat Li YJ, Lyon JT, Woodham AP, Fielicke A, Janssens E (2014) The geometric structure of silver-doped silicon clusters. Chem Phys Chem 15(2):328–336 Li YJ, Lyon JT, Woodham AP, Fielicke A, Janssens E (2014) The geometric structure of silver-doped silicon clusters. Chem Phys Chem 15(2):328–336
17.
Zurück zum Zitat Lu J, Nagase S (2003) Structural and electronic properties of metal-encapsulated silicon clusters in a large size range. Phys Rev Lett 90(11):115506/1–115506/4CrossRef Lu J, Nagase S (2003) Structural and electronic properties of metal-encapsulated silicon clusters in a large size range. Phys Rev Lett 90(11):115506/1–115506/4CrossRef
18.
Zurück zum Zitat Miyazaki T, Hiura H, Kanayama T (2003) Electronic properties of transition-metal-atom doped Si cage clusters. Eur Phys J D 24(1):241–244CrossRef Miyazaki T, Hiura H, Kanayama T (2003) Electronic properties of transition-metal-atom doped Si cage clusters. Eur Phys J D 24(1):241–244CrossRef
19.
Zurück zum Zitat Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters MSi n (M = Sc,Ti,V,Cr,Mn,Ni,Cu,Zn; n = 8–16). Phys Rev B 77(19):195417/1–195417/8CrossRef Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters MSi n (M = Sc,Ti,V,Cr,Mn,Ni,Cu,Zn; n = 8–16). Phys Rev B 77(19):195417/1–195417/8CrossRef
20.
Zurück zum Zitat Ma L, Wang JG, Wang GH (2013) Site-specific analysis of dipole polarizabilities of heterogeneous systems: Iron-doped Si n (n = 1–14) clusters. J Chem Phys 138(9):094304/1–094304/9CrossRef Ma L, Wang JG, Wang GH (2013) Site-specific analysis of dipole polarizabilities of heterogeneous systems: Iron-doped Si n (n = 1–14) clusters. J Chem Phys 138(9):094304/1–094304/9CrossRef
21.
Zurück zum Zitat Ren ZY, Hou R, Guo P, Gao JK, Du GH, Wen ZY (2008) A density functional theoretical investigation of RhSi n (n = 1–6) clusters. Chin Phys B 17(6):2116–2123CrossRef Ren ZY, Hou R, Guo P, Gao JK, Du GH, Wen ZY (2008) A density functional theoretical investigation of RhSi n (n = 1–6) clusters. Chin Phys B 17(6):2116–2123CrossRef
22.
Zurück zum Zitat Chien CH, Blaisten-Barojas E, Pederson MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58(3):2196–2202CrossRef Chien CH, Blaisten-Barojas E, Pederson MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58(3):2196–2202CrossRef
23.
Zurück zum Zitat Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Hybrid density functional study of small Rh n (n = 2–15) clusters. Phys Rev B 86(12):125430/1–125430/6CrossRef Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Hybrid density functional study of small Rh n (n = 2–15) clusters. Phys Rev B 86(12):125430/1–125430/6CrossRef
24.
Zurück zum Zitat Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82(9):094116/1–094116/8 Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82(9):094116/1–094116/8
25.
Zurück zum Zitat Wang YC, Lv J, Zhu L, Ma YM (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183(10):2063–2070CrossRef Wang YC, Lv J, Zhu L, Ma YM (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183(10):2063–2070CrossRef
26.
Zurück zum Zitat Wang YC, Miao, Lv J, Zhu L, Yin KT, Liu HY, Ma YM (2012) An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys 137(22):224108/1–224108/6 Wang YC, Miao, Lv J, Zhu L, Yin KT, Liu HY, Ma YM (2012) An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys 137(22):224108/1–224108/6
27.
Zurück zum Zitat Luo X, Yang J, Liu H, Wu X, Wang Y, Ma YM, Wei SH, Gong X, Xiang H (2001) Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc 133(40):16285–16290CrossRef Luo X, Yang J, Liu H, Wu X, Wang Y, Ma YM, Wei SH, Gong X, Xiang H (2001) Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc 133(40):16285–16290CrossRef
28.
Zurück zum Zitat Lu SH, Wang YC, Liu HY, Miao MS, Ma YM (2014) Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun 5(16):3666–3672 Lu SH, Wang YC, Liu HY, Miao MS, Ma YM (2014) Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun 5(16):3666–3672
29.
Zurück zum Zitat Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baron V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez G, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, HeadGordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baron V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez G, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, HeadGordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford
30.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRef
31.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRef
32.
Zurück zum Zitat Xiao CY, Hagelberg F, Lester WA Jr (2002) Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Phys Rev B 66(7):075425/1–075425/23CrossRef Xiao CY, Hagelberg F, Lester WA Jr (2002) Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Phys Rev B 66(7):075425/1–075425/23CrossRef
33.
Zurück zum Zitat Hossain D, Pittman CU Jr, Gwaltney SR (2008) Structures and stabilities of copper encapsulated within silicon nano-clusters: Cu@Si n (n = 9–15). Chem Phys Lett 451(1–3):93–97CrossRef Hossain D, Pittman CU Jr, Gwaltney SR (2008) Structures and stabilities of copper encapsulated within silicon nano-clusters: Cu@Si n (n = 9–15). Chem Phys Lett 451(1–3):93–97CrossRef
34.
Zurück zum Zitat Han JG, Zhao RN, Duan YH (2007) Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Si n (n = 9–16) clusters: a density functional investigation. J Phys Chem A 111(11):2148–2155CrossRef Han JG, Zhao RN, Duan YH (2007) Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Si n (n = 9–16) clusters: a density functional investigation. J Phys Chem A 111(11):2148–2155CrossRef
35.
Zurück zum Zitat Tam NM, Tai TB, Ngan VT, Nguyen MT (2013) Thermochemical properties, and growth sequence of aluminum-doped silicon clusters Si n Al m (n = 1–11, m = 1–2) and their anions. J Phys Chem A 117(31):6867–6882CrossRef Tam NM, Tai TB, Ngan VT, Nguyen MT (2013) Thermochemical properties, and growth sequence of aluminum-doped silicon clusters Si n Al m (n = 1–11, m = 1–2) and their anions. J Phys Chem A 117(31):6867–6882CrossRef
36.
Zurück zum Zitat Guo LJ, Liu X, Zhao GF, Luo YH (2007) Computational investigation of TiSi n (n = 2–15) clusters by the density-functional theory. J Chem Phys 126(23):234704/1–234704/7CrossRef Guo LJ, Liu X, Zhao GF, Luo YH (2007) Computational investigation of TiSi n (n = 2–15) clusters by the density-functional theory. J Chem Phys 126(23):234704/1–234704/7CrossRef
37.
Zurück zum Zitat Maroulis G (2012) Applying conventional ab initio and density functional theory approaches to electric property calculations. Quantitative aspects and perspectives. Struct Bond 149:95–130 Maroulis G (2012) Applying conventional ab initio and density functional theory approaches to electric property calculations. Quantitative aspects and perspectives. Struct Bond 149:95–130
38.
Zurück zum Zitat Karamanis P, Maroulis G (2003) Single (C–C) and triple (C ≡ C) bond-length dependence of the static electric polarizability and hyperpolarizability of H–C ≡ C–C ≡ C–H. Chem Phys Lett 376:403–410CrossRef Karamanis P, Maroulis G (2003) Single (C–C) and triple (C ≡ C) bond-length dependence of the static electric polarizability and hyperpolarizability of H–C ≡ C–C ≡ C–H. Chem Phys Lett 376:403–410CrossRef
39.
Zurück zum Zitat Hohm U, Maroulis G (2004) Dipole-quadrupole and dipole–octopole polarizability of OsO4 from depolarized collision-induced light scattering experiments, ab initio and density functional theory calculations. J Chem Phys 121(21):10411–10418CrossRef Hohm U, Maroulis G (2004) Dipole-quadrupole and dipole–octopole polarizability of OsO4 from depolarized collision-induced light scattering experiments, ab initio and density functional theory calculations. J Chem Phys 121(21):10411–10418CrossRef
40.
Zurück zum Zitat Maroulis G (2011) Charge distribution, electric multipole moments, static polarizability and hyperpolarizability of silene. Chem Phys Lett 505:5–10CrossRef Maroulis G (2011) Charge distribution, electric multipole moments, static polarizability and hyperpolarizability of silene. Chem Phys Lett 505:5–10CrossRef
41.
Zurück zum Zitat Maroulis G (2003) Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem Phys 291:81–95CrossRef Maroulis G (2003) Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem Phys 291:81–95CrossRef
42.
Zurück zum Zitat Gingerich KA, Cocke DL (1972) Thermodynamic confirmation for the high stability of gaseous TiRh as predicted by the Brewer–Engel metallic theory and the dissociation energy of diatomic rhodium. J Chem Soc, Chem Commun 1:536CrossRef Gingerich KA, Cocke DL (1972) Thermodynamic confirmation for the high stability of gaseous TiRh as predicted by the Brewer–Engel metallic theory and the dissociation energy of diatomic rhodium. J Chem Soc, Chem Commun 1:536CrossRef
43.
Zurück zum Zitat Huber KP, Herzberg G (1979) Constants of Diatomic Molecules. Van Nostrand Reinhold, New York, pp 125–128 Huber KP, Herzberg G (1979) Constants of Diatomic Molecules. Van Nostrand Reinhold, New York, pp 125–128
44.
Zurück zum Zitat Marijnissen A, Ter Meulen JJ (1996) Determination of the adiabatic ionization potentials of Si2 and SiCl by photoionization efficiency spectroscopy. Chem Phys Lett 263(6):803–810CrossRef Marijnissen A, Ter Meulen JJ (1996) Determination of the adiabatic ionization potentials of Si2 and SiCl by photoionization efficiency spectroscopy. Chem Phys Lett 263(6):803–810CrossRef
45.
Zurück zum Zitat Zhu XL, Zeng XC, Lei YA, Pan B (2004) Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. J Chem Phys 120(19):8985–8995CrossRef Zhu XL, Zeng XC, Lei YA, Pan B (2004) Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. J Chem Phys 120(19):8985–8995CrossRef
46.
Zurück zum Zitat Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rh n (n = 2–13) clusters. Phys Rev B 59(7):5214–5222CrossRef Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rh n (n = 2–13) clusters. Phys Rev B 59(7):5214–5222CrossRef
47.
Zurück zum Zitat Arab A, Gobal F, Nahali N, Nahali M (2013) Electronic and structural properties of neutral, anionic, and cationic RhxCu4−x (x = 0–4) small clusters: a DFT study. J Clust Sci 24(1):273–287CrossRef Arab A, Gobal F, Nahali N, Nahali M (2013) Electronic and structural properties of neutral, anionic, and cationic RhxCu4−x (x = 0–4) small clusters: a DFT study. J Clust Sci 24(1):273–287CrossRef
48.
Zurück zum Zitat Beltrán, Zamudio FB, Chauhan V, Sen P, Wang HP, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rh n (n = 1–9) clusters. Eur Phys J D 67:63/1–63/8CrossRef Beltrán, Zamudio FB, Chauhan V, Sen P, Wang HP, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rh n (n = 1–9) clusters. Eur Phys J D 67:63/1–63/8CrossRef
49.
Zurück zum Zitat Wu ZJ, Su ZM (2006) Electronic structures and chemical bonding in transition metal monosilicides MSi (M = 3d, 4d, 5d elements). J Chem Phys 124(18):184306/1–184306/15CrossRef Wu ZJ, Su ZM (2006) Electronic structures and chemical bonding in transition metal monosilicides MSi (M = 3d, 4d, 5d elements). J Chem Phys 124(18):184306/1–184306/15CrossRef
50.
Zurück zum Zitat Bruna PJ, Peyerimhoff SD, Buenker RJ (1980) Theoretical prediction of the potential curves for the lowest-lying states of the isovalent diatomics CN+, Si2, SiC, CP+, and SiN+ using the abinitio MRD-CI method. J Chem Phys 72(10):5437–5445CrossRef Bruna PJ, Peyerimhoff SD, Buenker RJ (1980) Theoretical prediction of the potential curves for the lowest-lying states of the isovalent diatomics CN+, Si2, SiC, CP+, and SiN+ using the abinitio MRD-CI method. J Chem Phys 72(10):5437–5445CrossRef
51.
Zurück zum Zitat Nigam S, Majunmder C, Kulshreshtha SK (2006) Structural and electronic properties of Si n , Si n - , and PSi n-1 clusters (2 ≤ n ≤ 13): Theoretical investigation based on ab initio molecular orbital theory. J Chem Phys 125(7):074303/1–074303/11CrossRef Nigam S, Majunmder C, Kulshreshtha SK (2006) Structural and electronic properties of Si n , Si n - , and PSi n-1 clusters (2 ≤ n ≤ 13): Theoretical investigation based on ab initio molecular orbital theory. J Chem Phys 125(7):074303/1–074303/11CrossRef
52.
Zurück zum Zitat Robles R, Khanna SN (2009) Stable T2Si n (T = Fe,Co,Ni, 1 ≤ n ≤ 8) cluster motifs. J Chem Phys 130(16):164313/1–164313/6CrossRef Robles R, Khanna SN (2009) Stable T2Si n (T = Fe,Co,Ni, 1 ≤ n ≤ 8) cluster motifs. J Chem Phys 130(16):164313/1–164313/6CrossRef
53.
Zurück zum Zitat Robles R, Khanna SN (2008) Stability and magnetic properties of T2Si n (T = Cr, Mn, 1 ≤ n ≤ 8) clusters. Phys Rev B 77(23):235441/1–235441/6CrossRef Robles R, Khanna SN (2008) Stability and magnetic properties of T2Si n (T = Cr, Mn, 1 ≤ n ≤ 8) clusters. Phys Rev B 77(23):235441/1–235441/6CrossRef
54.
Zurück zum Zitat Shao P, Kuang XY, Ding LP, Zhong MM, Wang ZH (2012) Density-functional theory study of structures, stabilities, and electronic properties of the Cu2-doped silicon clusters: comparison with pure silicon clusters. Phys B 407(21):4379–4386CrossRef Shao P, Kuang XY, Ding LP, Zhong MM, Wang ZH (2012) Density-functional theory study of structures, stabilities, and electronic properties of the Cu2-doped silicon clusters: comparison with pure silicon clusters. Phys B 407(21):4379–4386CrossRef
55.
Zurück zum Zitat Jungnickel G, Frauenheim T, Jackson KA (2000) Structure and energetics of Si n N m clusters: growth pathways in a heterogenous cluster system. J Chem Phys 112(3):1295–1305CrossRef Jungnickel G, Frauenheim T, Jackson KA (2000) Structure and energetics of Si n N m clusters: growth pathways in a heterogenous cluster system. J Chem Phys 112(3):1295–1305CrossRef
56.
Zurück zum Zitat Zdetsis AD (2009) Silicon-bismuth and germanium-bismuth clusters of high stability. J Phys Chem A 113(44):12079–12087CrossRef Zdetsis AD (2009) Silicon-bismuth and germanium-bismuth clusters of high stability. J Phys Chem A 113(44):12079–12087CrossRef
57.
Zurück zum Zitat Gao AM, Li GL, Chang Y, Chen HY, Finlow D, Li QS (2011) The structures and stabilities of small diarsenic-doped silicon clusters. Inorg Chim Acta 367(1):51–56CrossRef Gao AM, Li GL, Chang Y, Chen HY, Finlow D, Li QS (2011) The structures and stabilities of small diarsenic-doped silicon clusters. Inorg Chim Acta 367(1):51–56CrossRef
58.
Zurück zum Zitat Pouchan C, Bégue D, Zhang DY (2004) Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si n (n = 3–10). J Chem Phys 121(10):4628–4634CrossRef Pouchan C, Bégue D, Zhang DY (2004) Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si n (n = 3–10). J Chem Phys 121(10):4628–4634CrossRef
59.
Zurück zum Zitat Xu HG, Zhang ZG, Feng Y, Zheng WJ (2010) Photoelectron spectroscopy and density-functional study of Sc2Si n − (n = 2–6) clusters. Chem Phys Lett 498(1–3):22–26CrossRef Xu HG, Zhang ZG, Feng Y, Zheng WJ (2010) Photoelectron spectroscopy and density-functional study of Sc2Si n (n = 2–6) clusters. Chem Phys Lett 498(1–3):22–26CrossRef
60.
Zurück zum Zitat Fielicke A, Lyon JT, Haertelt M, Meijer G, Claes P, De Haeck J, Lievens P (2009) Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization. J Chem Phys 131(17):171105/1–171105/4CrossRef Fielicke A, Lyon JT, Haertelt M, Meijer G, Claes P, De Haeck J, Lievens P (2009) Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization. J Chem Phys 131(17):171105/1–171105/4CrossRef
61.
Zurück zum Zitat Haertelt M, Lyon JT, Claes P, De Haeck J, Lievens P, Fielicke A (2012) Gas-phase structures of neutral silicon clusters. J Chem Phys 136(6):064301/1–064301/6CrossRef Haertelt M, Lyon JT, Claes P, De Haeck J, Lievens P, Fielicke A (2012) Gas-phase structures of neutral silicon clusters. J Chem Phys 136(6):064301/1–064301/6CrossRef
62.
Zurück zum Zitat Vogel M, Kasigkeit C, Hirsch K, Langenberg A, Rittmann J, Zamudio-Bayer V, Kulesza A, Mitrić R, Möller T, Issendorff BV, Lau JT (2012) 2p core-level binding energies of size-selected free silicon clusters: Chemical shifts and cluster structure. Phys Rev B 85(19):195454/1–195454/5CrossRef Vogel M, Kasigkeit C, Hirsch K, Langenberg A, Rittmann J, Zamudio-Bayer V, Kulesza A, Mitrić R, Möller T, Issendorff BV, Lau JT (2012) 2p core-level binding energies of size-selected free silicon clusters: Chemical shifts and cluster structure. Phys Rev B 85(19):195454/1–195454/5CrossRef
63.
Zurück zum Zitat Tam NM, Tai TB, Nguyen MT (2012) Thermochemical parameters and growth mechanism of the boron doped silicon clusters, Si n B q with n = 1–10 and q = −1, 0, +1. J Phys Chem C 116(37):20086–20098CrossRef Tam NM, Tai TB, Nguyen MT (2012) Thermochemical parameters and growth mechanism of the boron doped silicon clusters, Si n B q with n = 1–10 and q = −1, 0, +1. J Phys Chem C 116(37):20086–20098CrossRef
64.
Zurück zum Zitat Liu Y, Li GL, Gao AM, Chen HY, Finlow D, Li QS (2011) The structures and properties of FeSi n /FeSi n + /FeSi n − (n = 1–8) clusters. Eur Phys J D 64(1):27–35CrossRef Liu Y, Li GL, Gao AM, Chen HY, Finlow D, Li QS (2011) The structures and properties of FeSi n /FeSi n + /FeSi n (n = 1–8) clusters. Eur Phys J D 64(1):27–35CrossRef
65.
Zurück zum Zitat Lu C, Kuang XY, Lu ZW, Mao AJ, Ma YM (2011) Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study. J Phys Chem A 115(33):9273–9281CrossRef Lu C, Kuang XY, Lu ZW, Mao AJ, Ma YM (2011) Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study. J Phys Chem A 115(33):9273–9281CrossRef
66.
Zurück zum Zitat Trivedi R, Dhaka K, Bandyopadhyay D (2014) Study of electronic properties, stabilities and magnetic quenching of molybdenum-doped germanium clusters: a density functional investigation. RSC Adv 4(110):64825–64834CrossRef Trivedi R, Dhaka K, Bandyopadhyay D (2014) Study of electronic properties, stabilities and magnetic quenching of molybdenum-doped germanium clusters: a density functional investigation. RSC Adv 4(110):64825–64834CrossRef
67.
Zurück zum Zitat Zhou GD, Duan LY (2002) Structural chemistry basis. Peking University Press, Beijing, pp 178–186 Zhou GD, Duan LY (2002) Structural chemistry basis. Peking University Press, Beijing, pp 178–186
68.
Zurück zum Zitat Bhattacharjee D, Kr Mishra B, Ch Deka RA (2014) A DFT study on structure, stabilities and electronic properties of double magnesium doped gold clusters. RSC Adv 4(100):56571–56581CrossRef Bhattacharjee D, Kr Mishra B, Ch Deka RA (2014) A DFT study on structure, stabilities and electronic properties of double magnesium doped gold clusters. RSC Adv 4(100):56571–56581CrossRef
69.
Zurück zum Zitat Zhang XR, Ding XL, Dai B, Yang JL (2005) Density functional theory study of W n (n = 2–4) clusters. J Mol Struct: Theochem 757(1):113–118 Zhang XR, Ding XL, Dai B, Yang JL (2005) Density functional theory study of W n (n = 2–4) clusters. J Mol Struct: Theochem 757(1):113–118
70.
Zurück zum Zitat Zhao YR, Kuang XY, Shao P, Li CG, Wang SJ, Li YF (2012) A systematic search for the structures, stabilities, and electronic properties of bimetallic Ca2-doped gold clusters: comparison with pure gold clusters. J Mol Model 18(4):1333–1343CrossRef Zhao YR, Kuang XY, Shao P, Li CG, Wang SJ, Li YF (2012) A systematic search for the structures, stabilities, and electronic properties of bimetallic Ca2-doped gold clusters: comparison with pure gold clusters. J Mol Model 18(4):1333–1343CrossRef
71.
Zurück zum Zitat Brieger M, Renn A, Sodeik A, Hese A (1983) The dipole moment of 7LiH and 7LiD in the excited A 1Σ+ state: a test of the born-oppenheimer approximation. Chem Phys 75(1):1–9CrossRef Brieger M, Renn A, Sodeik A, Hese A (1983) The dipole moment of 7LiH and 7LiD in the excited A 1Σ+ state: a test of the born-oppenheimer approximation. Chem Phys 75(1):1–9CrossRef
72.
Zurück zum Zitat Brieger M (1984) Stark effect, polarizabilities and the electric dipole moment of heteronuclear diatomic molecules in 1Σ states. Chem Phys 89(2):275–295CrossRef Brieger M (1984) Stark effect, polarizabilities and the electric dipole moment of heteronuclear diatomic molecules in 1Σ states. Chem Phys 89(2):275–295CrossRef
73.
Zurück zum Zitat Bégué D, Merawa M, Pouchan C (1998) Dynamic dipole and quadrupole polarizabilities for the ground 21S and the low-lying 31S and 33S states of Be. Phys Rev A 57(4):2470–2473CrossRef Bégué D, Merawa M, Pouchan C (1998) Dynamic dipole and quadrupole polarizabilities for the ground 21S and the low-lying 31S and 33S states of Be. Phys Rev A 57(4):2470–2473CrossRef
74.
Zurück zum Zitat Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) Molecular electronic excitations and the minimum polarizability principle. J Phys Chem A 104(14):3185–3187CrossRef Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) Molecular electronic excitations and the minimum polarizability principle. J Phys Chem A 104(14):3185–3187CrossRef
75.
Zurück zum Zitat Wang JL, Yang ML, Wang GH, Zhao JJ (2003) Dipole polarizabilities of germanium clusters. Chem Phys Lett 367(3–4):448–454CrossRef Wang JL, Yang ML, Wang GH, Zhao JJ (2003) Dipole polarizabilities of germanium clusters. Chem Phys Lett 367(3–4):448–454CrossRef
76.
Zurück zum Zitat Vasiliev I, Ogut S, Chelikowsky JR (1997) Ab initio calculations for the polarizabilities of small semiconductor clusters. Phys Rev Lett 78(25):4805–4808CrossRef Vasiliev I, Ogut S, Chelikowsky JR (1997) Ab initio calculations for the polarizabilities of small semiconductor clusters. Phys Rev Lett 78(25):4805–4808CrossRef
77.
Zurück zum Zitat Deng K, Yang JL, Chan CT (2000) Calculated polarizabilities of small Si clusters. Phys Rev A 61(2):025201/1–025201/4CrossRef Deng K, Yang JL, Chan CT (2000) Calculated polarizabilities of small Si clusters. Phys Rev A 61(2):025201/1–025201/4CrossRef
78.
Zurück zum Zitat Jackson KA, Yang M, Chaudhuri I, Frauenheim T (2005) Shape, polarizability, and metallicity in silicon clusters. Phys Rev A 71(3):033205/1–033205/6CrossRef Jackson KA, Yang M, Chaudhuri I, Frauenheim T (2005) Shape, polarizability, and metallicity in silicon clusters. Phys Rev A 71(3):033205/1–033205/6CrossRef
79.
Zurück zum Zitat Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115(5):569–576CrossRef Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Au n (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115(5):569–576CrossRef
Metadaten
Titel
Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: Rh2Si n q (n = 1–10; q = 0, ±1)
verfasst von
Shuai Zhang
Yu Zhang
Xingqiang Yang
Cheng Lu
Genquan Li
Zhiwen Lu
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9175-x

Weitere Artikel der Ausgabe 18/2015

Journal of Materials Science 18/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.