Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

02.11.2020

Tailoring Surface Integrity of Biomedical Mg Alloy AZ31B Using Distinct End Mill Treatment Conditions and Machining Environments

verfasst von: Rahul Davis, Abhishek Singh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnesium alloys are identified as the new generation degradable biomaterials in the biomedical industry. They can prevent secondary operation for the removal of the inserted implant. Nowadays, sustainable manufacturing is promoting the use of low-temperature machining environments over the traditional means. Surface integrity characteristics of the machined surface and tool wear have always been some of the key interests of the researchers. In this research, aluminum titanium nitride-coated cemented carbide end mills were employed in an untreated and cryo-treated condition to machine the biomedical magnesium alloy AZ31B. The experiments were designed using one-factor-at-a-time (OFAT) approach, and milling operations were conducted under three different machining environments, namely wet, cryogenic, and hybrid. Spindle speed, feed rate, and depth of cut were chosen as the input control variables for a comparative study to achieve lowest surface roughness and highest surface microhardness. The results displayed an improvement in the outcome at higher spindle speed (2800 rpm) and lower feed rate (80 mm/rev) and depth of cut (0.5 mm) produced by untreated end mill during cryo-milling. However, the treated end mill performed best with hybrid machining environment (simultaneous application of LN2 and cutting fluid) during milling. Moreover, in this case, the accumulated oxides were found to form the most uniform and thinnest passivation layer over the milled surface. Higher spindle speed in cryo-milling achieved 27.45 and 19.56% better surface finish than wet and hybrid-milling, respectively. Moreover, higher spindle speed in cryo-milling achieved 14.46 and 8.72% higher surface microhardness than wet and hybrid-milling, respectively. Higher spindle speed in hybrid-milling achieved 14.89 and 6.97% better surface finish than wet and cryo-milling, respectively. Furthermore, higher spindle speed in cryo-milling achieved 7.69 and 4.10% higher surface microhardness than wet and cryo-milling, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Denkena and A. Lucas, Biocompatible Magnesium Alloys as Absorbable Implant Materials—Adjusted Surface and Subsurface Properties by Machining Processes, CIRP Ann., 2007, 56(1), p 113–116 B. Denkena and A. Lucas, Biocompatible Magnesium Alloys as Absorbable Implant Materials—Adjusted Surface and Subsurface Properties by Machining Processes, CIRP Ann., 2007, 56(1), p 113–116
2.
Zurück zum Zitat M.S. Uddin, H. Rosman, C. Hall, and P. Murphy, Enhancing the Corrosion Resistance of Biodegradable Mg-Based Alloy by Machining-Induced Surface Integrity: Influence of Machining Parameters on Surface Roughness and Hardness, Int. J. Adv. Manuf. Technol., 2017, 90, p 2095–2108 M.S. Uddin, H. Rosman, C. Hall, and P. Murphy, Enhancing the Corrosion Resistance of Biodegradable Mg-Based Alloy by Machining-Induced Surface Integrity: Influence of Machining Parameters on Surface Roughness and Hardness, Int. J. Adv. Manuf. Technol., 2017, 90, p 2095–2108
3.
Zurück zum Zitat L. Claes and A. Ignatius, EntwicklungneuerbiodegradablerImplantate, Chirurg, 2002, 73, p 990–996 L. Claes and A. Ignatius, EntwicklungneuerbiodegradablerImplantate, Chirurg, 2002, 73, p 990–996
4.
Zurück zum Zitat C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review, Scanning, 2018, 2018, p 1–15 C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, and Y. Zhao, Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review, Scanning, 2018, 2018, p 1–15
5.
Zurück zum Zitat A. Biesiekierski, J. Wang, M.A.-H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1161–1669 A. Biesiekierski, J. Wang, M.A.-H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1161–1669
6.
Zurück zum Zitat F. Wang, S. Cai, S. Shen, N. Yu, F. Zhang, R. Ling, Y. Li, and G. Xu, Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26, p 4282–4290 F. Wang, S. Cai, S. Shen, N. Yu, F. Zhang, R. Ling, Y. Li, and G. Xu, Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy and Its Corrosion Resistance in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26, p 4282–4290
7.
Zurück zum Zitat M.S. Uddin, C. Hall, and P. Murphy, Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants, Sci. Technol. Adv. Mater., 2015, 16(5), p 053501 M.S. Uddin, C. Hall, and P. Murphy, Surface Treatments for Controlling Corrosion Rate of Biodegradable Mg and Mg-Based Alloy Implants, Sci. Technol. Adv. Mater., 2015, 16(5), p 053501
8.
Zurück zum Zitat R. Bertolini, L. Lizzul, L. Pezzato, A. Ghiotti, and S. Bruschi, Improving Surface Integrity and Corrosion Resistance of Additive Manufactured Ti6Al4V Alloy by Cryogenic Machining, Int. J. Adv. Manuf. Technol., 2019, 104, p 2839–2850 R. Bertolini, L. Lizzul, L. Pezzato, A. Ghiotti, and S. Bruschi, Improving Surface Integrity and Corrosion Resistance of Additive Manufactured Ti6Al4V Alloy by Cryogenic Machining, Int. J. Adv. Manuf. Technol., 2019, 104, p 2839–2850
9.
Zurück zum Zitat J. Tang, H.Y. Luo, and Y.B. Zhang, Enhancing the Surface Integrity and Corrosion Resistance of Ti-6Al-4V Titanium Alloy through Cryogenic Burnishing, Int. J. Adv. Manuf. Technol., 2017, 88, p 2785–2793 J. Tang, H.Y. Luo, and Y.B. Zhang, Enhancing the Surface Integrity and Corrosion Resistance of Ti-6Al-4V Titanium Alloy through Cryogenic Burnishing, Int. J. Adv. Manuf. Technol., 2017, 88, p 2785–2793
10.
Zurück zum Zitat S. Akincioğlu, H. Gökkaya, and İ. Uygur, A Review of Cryogenic Treatment on Cutting Tools, Int. J. Adv. Manuf. Technol., 2015, 78, p 1609–1627 S. Akincioğlu, H. Gökkaya, and İ. Uygur, A Review of Cryogenic Treatment on Cutting Tools, Int. J. Adv. Manuf. Technol., 2015, 78, p 1609–1627
11.
Zurück zum Zitat J. Fulemova and Z. Janda, Influence of the Cutting Edge Radius and the Cutting Edge Preparation on Tool Life and Cutting Forces at Inserts with Wiper Geometry, Proc. Eng., 2014, 69, p 565–573 J. Fulemova and Z. Janda, Influence of the Cutting Edge Radius and the Cutting Edge Preparation on Tool Life and Cutting Forces at Inserts with Wiper Geometry, Proc. Eng., 2014, 69, p 565–573
12.
Zurück zum Zitat V.V. Mukkoti, G. Sankaraiah, and M. Yohan, Effect of Cryogenic Treatment of Tungsten Carbide Tools on Cutting Force and Power Consumption in CNC Milling Process, Prod. Manuf. Res., 2018, 6(1), p 149–170 V.V. Mukkoti, G. Sankaraiah, and M. Yohan, Effect of Cryogenic Treatment of Tungsten Carbide Tools on Cutting Force and Power Consumption in CNC Milling Process, Prod. Manuf. Res., 2018, 6(1), p 149–170
13.
Zurück zum Zitat A.Y.L. Yong, K.H.W. Seah, and M. Rahman, Performance of Cryogenically Treated Tungsten Carbide Tools in Milling Operations, Int. J. Adv. Manuf. Technol., 2007, 32, p 638–643 A.Y.L. Yong, K.H.W. Seah, and M. Rahman, Performance of Cryogenically Treated Tungsten Carbide Tools in Milling Operations, Int. J. Adv. Manuf. Technol., 2007, 32, p 638–643
14.
Zurück zum Zitat N.R. Dhar and M. Kamruzzaman, Cutting Temperature, Tool Wear, Surface Roughness and Dimensional Deviation in Turning AISI-4037 Steel under Cryogenic Condition, Int. J. Mach. Tool. Manuf., 2007, 47(5), p 754–759 N.R. Dhar and M. Kamruzzaman, Cutting Temperature, Tool Wear, Surface Roughness and Dimensional Deviation in Turning AISI-4037 Steel under Cryogenic Condition, Int. J. Mach. Tool. Manuf., 2007, 47(5), p 754–759
15.
Zurück zum Zitat B. Podgornik, V. Leskovšek, and J. Vižintin, Influence of Deep Cryogenic Treatment on Tribological Properties of P/M High-Speed Steel, Mater. Manuf. Process., 2009, 24, p 734–738 B. Podgornik, V. Leskovšek, and J. Vižintin, Influence of Deep Cryogenic Treatment on Tribological Properties of P/M High-Speed Steel, Mater. Manuf. Process., 2009, 24, p 734–738
16.
Zurück zum Zitat A. Çiçek, F. Kara, T. Kıvak, E. Ekici, and I. Uygur, Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI, H13 Hot-Work Tool Steel, J. Mater. Eng. Perform., 2015, 24, p 4431–4439 A. Çiçek, F. Kara, T. Kıvak, E. Ekici, and I. Uygur, Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI, H13 Hot-Work Tool Steel, J. Mater. Eng. Perform., 2015, 24, p 4431–4439
17.
Zurück zum Zitat A. Khatri and M.P. Jahan, Investigating Tool Wear Mechanisms in Machining of Ti-6Al-4V in Flood Coolant, Dry and MQL Conditions, Proc. Manuf., 2018, 26, p 434–445 A. Khatri and M.P. Jahan, Investigating Tool Wear Mechanisms in Machining of Ti-6Al-4V in Flood Coolant, Dry and MQL Conditions, Proc. Manuf., 2018, 26, p 434–445
18.
Zurück zum Zitat S. Bhowmick, Minimum Quantity Lubrication Machining of Aluminum and Magnesium Alloys, Dissertation, University of Windsor, 2011 S. Bhowmick, Minimum Quantity Lubrication Machining of Aluminum and Magnesium Alloys, Dissertation, University of Windsor, 2011
19.
Zurück zum Zitat Y. Kaynak, B. Huang, H.E. Karaca, and I.S. Jawahir, Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions, J. Mater. Eng. Perform., 2017, 26, p 3597–3606 Y. Kaynak, B. Huang, H.E. Karaca, and I.S. Jawahir, Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions, J. Mater. Eng. Perform., 2017, 26, p 3597–3606
20.
Zurück zum Zitat H. Safari, S. Sharif, S. Izman, H. Jafari, and D. Kurniawan, Cutting Force and Surface Roughness Characterization in Cryogenic High-Speed End Milling of Ti-6Al-4V ELI, Mater. Manuf. Process., 2014, 29, p 350–356 H. Safari, S. Sharif, S. Izman, H. Jafari, and D. Kurniawan, Cutting Force and Surface Roughness Characterization in Cryogenic High-Speed End Milling of Ti-6Al-4V ELI, Mater. Manuf. Process., 2014, 29, p 350–356
22.
Zurück zum Zitat K.A. Al-Ghamdi, A. Iqbal, and G. Hussain, Machinability Comparison of AISI, 4340 and Ti-6Al-4V under Cryogenic and Hybrid Cooling Environments: A Knowledge Engineering Approach, Proc IMechE Part B J. Eng. Manuf., 2014, 229(12), p 2144–2164 K.A. Al-Ghamdi, A. Iqbal, and G. Hussain, Machinability Comparison of AISI, 4340 and Ti-6Al-4V under Cryogenic and Hybrid Cooling Environments: A Knowledge Engineering Approach, Proc IMechE Part B J. Eng. Manuf., 2014, 229(12), p 2144–2164
23.
Zurück zum Zitat C.F.J. Wu and M.S. Hamada, Experiments: Planning, Design, and Parameter Optimization, Wiley, New York, 2000 C.F.J. Wu and M.S. Hamada, Experiments: Planning, Design, and Parameter Optimization, Wiley, New York, 2000
24.
Zurück zum Zitat F.Z. Fang, L.C. Lee, and X.D. Liu, Mean Flank Temperature Measurement in High Speed Dry Cutting of Magnesium Alloy, J. Mater. Process. Technol., 2005, 167(1), p 119–123 F.Z. Fang, L.C. Lee, and X.D. Liu, Mean Flank Temperature Measurement in High Speed Dry Cutting of Magnesium Alloy, J. Mater. Process. Technol., 2005, 167(1), p 119–123
25.
Zurück zum Zitat Abhijith, P. Srinivasa Pai, D. Grynal, and H. Gautama, Surface Roughness Optimization in Machining of AZ31 Magnesium Alloy Using ABC Algorithm, in MATEC Web of Conferences, 2018, p 144 Abhijith, P. Srinivasa Pai, D. Grynal, and H. Gautama, Surface Roughness Optimization in Machining of AZ31 Magnesium Alloy Using ABC Algorithm, in MATEC Web of Conferences, 2018, p 144
26.
Zurück zum Zitat M. Bosse, K.P. Hoyer, F.-W. Bach, and D. Bormann, Influence of Cutting and Non-cutting Processes on the Corrosion Behavior and the Mechanical Properties of Magnesium Alloys, in Magnesium Technology, 2008 M. Bosse, K.P. Hoyer, F.-W. Bach, and D. Bormann, Influence of Cutting and Non-cutting Processes on the Corrosion Behavior and the Mechanical Properties of Magnesium Alloys, in Magnesium Technology, 2008
27.
Zurück zum Zitat A. Bensely, S. Venkatesh, D.M. Lal, and N. Govindan, Effect of Cryogenic Treatment on Distribution of Residual Stress in Case Carburized En 353 Steel, Mater. Sci. Eng. A, 2008, 479, p 229–235 A. Bensely, S. Venkatesh, D.M. Lal, and N. Govindan, Effect of Cryogenic Treatment on Distribution of Residual Stress in Case Carburized En 353 Steel, Mater. Sci. Eng. A, 2008, 479, p 229–235
28.
Zurück zum Zitat N.S. Kalsi, R. Sehgal, and V.S. Sharma, Effect of Tempering After Cryogenic Treatment of Tungsten Carbide-Cobalt Bounded Inserts, Bull. Mater. Sci., 2014, 37(2), p 327–335 N.S. Kalsi, R. Sehgal, and V.S. Sharma, Effect of Tempering After Cryogenic Treatment of Tungsten Carbide-Cobalt Bounded Inserts, Bull. Mater. Sci., 2014, 37(2), p 327–335
29.
Zurück zum Zitat R. Thornton, T. Slatter, and R. Lewis, Effects of Deep Cryogenic Treatment on the Wear Development of H13A Tungsten Carbide Inserts When Machining AISI, 1045 Steel, Prod. Eng. Res. Devel., 2013, 8(3), p 355–364 R. Thornton, T. Slatter, and R. Lewis, Effects of Deep Cryogenic Treatment on the Wear Development of H13A Tungsten Carbide Inserts When Machining AISI, 1045 Steel, Prod. Eng. Res. Devel., 2013, 8(3), p 355–364
31.
Zurück zum Zitat I.S. Jawahir, E. Brinksmeier, R. M’Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal, Surface Integrity in Material Removal Processes: Recent Advances, CIRP Ann., 2011, 60(2), p 603–626 I.S. Jawahir, E. Brinksmeier, R. M’Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal, Surface Integrity in Material Removal Processes: Recent Advances, CIRP Ann., 2011, 60(2), p 603–626
32.
Zurück zum Zitat Y. Kaynak, T. Lu, and I.S. Jawahir, Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining, Mach. Sci. Technol., 2014, 18(2), p 149–198 Y. Kaynak, T. Lu, and I.S. Jawahir, Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining, Mach. Sci. Technol., 2014, 18(2), p 149–198
33.
Zurück zum Zitat S. Bruschi, R. Bertolini, A. Ghiotti, E. Savio, W. Guo, and R. Shivpuri, Machining-Induced Surface Transformations of Magnesium Alloys to Enhance Corrosion Resistance in Human-Like Environment, CIRP Ann., 2018, 67(1), p 579–582 S. Bruschi, R. Bertolini, A. Ghiotti, E. Savio, W. Guo, and R. Shivpuri, Machining-Induced Surface Transformations of Magnesium Alloys to Enhance Corrosion Resistance in Human-Like Environment, CIRP Ann., 2018, 67(1), p 579–582
34.
Zurück zum Zitat S.S. Huja, T.R. Katona, B.K. Moore, and W.E. Roberts, Microhardness and Anisotropy of the Vital Osseous Interface and Endosseous Implant Supporting Bone, J. Orthop. Res., 1998, 16(1), p 54–60 S.S. Huja, T.R. Katona, B.K. Moore, and W.E. Roberts, Microhardness and Anisotropy of the Vital Osseous Interface and Endosseous Implant Supporting Bone, J. Orthop. Res., 1998, 16(1), p 54–60
35.
Zurück zum Zitat S. Stea, M. Visentin, L. Savarino, G. Ciapetti, M.E. Donati, A. Moroni, V. Caja, and A. Pizzoferrato, Microhardness of Bone at the Interface with Ceramic-Coated Metal Implants, J. Biomed. Mater. Res., 1995, 29(6), p 695–699 S. Stea, M. Visentin, L. Savarino, G. Ciapetti, M.E. Donati, A. Moroni, V. Caja, and A. Pizzoferrato, Microhardness of Bone at the Interface with Ceramic-Coated Metal Implants, J. Biomed. Mater. Res., 1995, 29(6), p 695–699
36.
Zurück zum Zitat Y. Kaynak, H. Karaca, and I.S. Jawahir, Cryogenic Machining of NiTi Shape Memory Alloy, in 6th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, 2011, p 23–26 Y. Kaynak, H. Karaca, and I.S. Jawahir, Cryogenic Machining of NiTi Shape Memory Alloy, in 6th International Conference and Exhibition on Design and Production of Machines and Dies/Molds, 2011, p 23–26
37.
Zurück zum Zitat K.A. Abou-El-Hossein, K. Kadirgama, M. Hamdi, and K.Y. Benyounis, Prediction of Cutting Force in End Milling Operation of Modified AISI, P20 Tool Steel, J. Mater. Process. Technol., 2007, 182(1–3), p 241–247 K.A. Abou-El-Hossein, K. Kadirgama, M. Hamdi, and K.Y. Benyounis, Prediction of Cutting Force in End Milling Operation of Modified AISI, P20 Tool Steel, J. Mater. Process. Technol., 2007, 182(1–3), p 241–247
38.
Zurück zum Zitat S.L. Truesdale and Y.C. Shin, Microstructural Analysis and Machinability Improvement of Udimet 720 via Cryogenic Milling, Mach. Sci. Technol., 2009, 13(1), p 1–19 S.L. Truesdale and Y.C. Shin, Microstructural Analysis and Machinability Improvement of Udimet 720 via Cryogenic Milling, Mach. Sci. Technol., 2009, 13(1), p 1–19
39.
Zurück zum Zitat S. Akıncıoğlu, H. Gökkaya, and İ. Uygur, The Effects of Cryogenic-Treated Carbide Tools on Tool Wear and Surface Roughness of Turning of Hastelloy C22 Based on Taguchi Method, Int. J. Adv. Manuf. Technol., 2016, 82, p 303–314 S. Akıncıoğlu, H. Gökkaya, and İ. Uygur, The Effects of Cryogenic-Treated Carbide Tools on Tool Wear and Surface Roughness of Turning of Hastelloy C22 Based on Taguchi Method, Int. J. Adv. Manuf. Technol., 2016, 82, p 303–314
40.
Zurück zum Zitat H.-B. He, W.-Q. Han, H.-Y. Li, D.-Y. Li, J. Yang, T. Gu, and T. Deng, Effect of Deep Cryogenic Treatment on Machinability and Wear Mechanism of TiAlN Coated Tools during Dry Turning, Int. J. Precis. Eng. Manuf., 2014, 15, p 655–660 H.-B. He, W.-Q. Han, H.-Y. Li, D.-Y. Li, J. Yang, T. Gu, and T. Deng, Effect of Deep Cryogenic Treatment on Machinability and Wear Mechanism of TiAlN Coated Tools during Dry Turning, Int. J. Precis. Eng. Manuf., 2014, 15, p 655–660
41.
Zurück zum Zitat S. Sartori, L. Pezzato, M. Dabalà, T.M. Enrici, A. Mertens, A. Ghiotti, and S. Bruschi, Surface Integrity Analysis of Ti6Al4V After Semi-finishing Turning under Different Low-Temperature Cooling Strategies, J. Mater. Eng. Perform., 2018, 27, p 4810–4818 S. Sartori, L. Pezzato, M. Dabalà, T.M. Enrici, A. Mertens, A. Ghiotti, and S. Bruschi, Surface Integrity Analysis of Ti6Al4V After Semi-finishing Turning under Different Low-Temperature Cooling Strategies, J. Mater. Eng. Perform., 2018, 27, p 4810–4818
42.
Zurück zum Zitat F. Klocke, L. Settineri, D. Lung, and P.C. Priarone, High Performance Cutting of Gamma Titanium Aluminides: Influence of Lubricoolant Strategy on Tool Wear and Surface Integrity, Wear, 2013, 302(1–2), p 1136–1144 F. Klocke, L. Settineri, D. Lung, and P.C. Priarone, High Performance Cutting of Gamma Titanium Aluminides: Influence of Lubricoolant Strategy on Tool Wear and Surface Integrity, Wear, 2013, 302(1–2), p 1136–1144
43.
Zurück zum Zitat W. Zhang, K. Fang, Y. Hu, S. Wang, and X. Wang, Effect of Machining-Induced Surface Residual Stress on Initiation of Stress Corrosion Cracking in 316 Austenitic Stainless Steel, Corros. Sci., 2016, 108, p 173–184 W. Zhang, K. Fang, Y. Hu, S. Wang, and X. Wang, Effect of Machining-Induced Surface Residual Stress on Initiation of Stress Corrosion Cracking in 316 Austenitic Stainless Steel, Corros. Sci., 2016, 108, p 173–184
44.
Zurück zum Zitat M. Danish, T.L. Ginta, K. Habib, D. Carou, A.M.A. Rani, and B.B. Saha, Thermal Analysis during Turning of AZ31 Magnesium Alloy under Dry and Cryogenic Conditions, Int. J. Adv. Manuf. Technol., 2017, 91, p 2855–2868 M. Danish, T.L. Ginta, K. Habib, D. Carou, A.M.A. Rani, and B.B. Saha, Thermal Analysis during Turning of AZ31 Magnesium Alloy under Dry and Cryogenic Conditions, Int. J. Adv. Manuf. Technol., 2017, 91, p 2855–2868
45.
Zurück zum Zitat M. Ijiri, D. Shimonishi, S. Tani, N. Okada, M. Yamamoto, D. Nakagawa, K. Tanaka, and T. Yoshimura, Improvement of Corrosion Resistance of Magnesium Alloy by High-Temperature High-Pressure Cavitation Treatment, Int. J. Lightweight Mater. Manuf., 2019, 2, p 255–260 M. Ijiri, D. Shimonishi, S. Tani, N. Okada, M. Yamamoto, D. Nakagawa, K. Tanaka, and T. Yoshimura, Improvement of Corrosion Resistance of Magnesium Alloy by High-Temperature High-Pressure Cavitation Treatment, Int. J. Lightweight Mater. Manuf., 2019, 2, p 255–260
47.
Zurück zum Zitat M. Liu, J. Wang, S. Zhu, Y. Zhang, Y.F. Sun, L. Wang, and S. Guan, Corrosion Fatigue of the Extruded Mg-Zn-Y-Nd Alloy in Simulated Body Fluid, J. Magn. Alloys, 2020, 8, p 231–240 M. Liu, J. Wang, S. Zhu, Y. Zhang, Y.F. Sun, L. Wang, and S. Guan, Corrosion Fatigue of the Extruded Mg-Zn-Y-Nd Alloy in Simulated Body Fluid, J. Magn. Alloys, 2020, 8, p 231–240
48.
Zurück zum Zitat J.C. Villegas and L.L. Shaw, Nanocrystallization Process and Mechanism in a Nickel Alloy Subjected to Surface Severe Plastic Deformation, Acta Mater., 2009, 57, p 5782–5795 J.C. Villegas and L.L. Shaw, Nanocrystallization Process and Mechanism in a Nickel Alloy Subjected to Surface Severe Plastic Deformation, Acta Mater., 2009, 57, p 5782–5795
49.
Zurück zum Zitat A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure, Corros. Sci., 2011, 53(10), p 3398–3415 A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, Sensitivity of Stress Corrosion Cracking of Stainless Steel to Surface Machining and Grinding Procedure, Corros. Sci., 2011, 53(10), p 3398–3415
50.
Zurück zum Zitat X. Liu and G.S. Frankel, Effects of Compressive Stress on Localized Corrosion in AA2024-T3, Corros. Sci., 2006, 48(10), p 3309–3329 X. Liu and G.S. Frankel, Effects of Compressive Stress on Localized Corrosion in AA2024-T3, Corros. Sci., 2006, 48(10), p 3309–3329
51.
Zurück zum Zitat Z. Pu, D. Umbrello, O.W. Dillon, Jr., and I.S. Jawahir, Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ-31B Mg Alloy, Proc. CIRP, 2014, 13, p 282–287 Z. Pu, D. Umbrello, O.W. Dillon, Jr., and I.S. Jawahir, Finite Element Simulation of Residual Stresses in Cryogenic Machining of AZ-31B Mg Alloy, Proc. CIRP, 2014, 13, p 282–287
52.
Zurück zum Zitat L.D. Duceac, S. Straticiuc, E. Hanganu, L. Stafie, G. Callin, and S.L. Gavrilescu, Preventing Bacterial Infections Using Metal Oxides Nanocoatings on Bone Implant, IOP Conf. Ser. Mater. Sci. Eng., 2017, 209, p 1–5 L.D. Duceac, S. Straticiuc, E. Hanganu, L. Stafie, G. Callin, and S.L. Gavrilescu, Preventing Bacterial Infections Using Metal Oxides Nanocoatings on Bone Implant, IOP Conf. Ser. Mater. Sci. Eng., 2017, 209, p 1–5
53.
Zurück zum Zitat M. Sankar, J. Vishnu, M. Gupta, and G. Manivasagam, Magnesium-Based Alloys and Nanocomposites for Biomedical of Nanocomposite Materials in Orthopedics, Woodhead Publishing Series in Biomaterials, Sawston, 2019, p 83–109 M. Sankar, J. Vishnu, M. Gupta, and G. Manivasagam, Magnesium-Based Alloys and Nanocomposites for Biomedical of Nanocomposite Materials in Orthopedics, Woodhead Publishing Series in Biomaterials, Sawston, 2019, p 83–109
54.
Zurück zum Zitat J.-W. Park, Y.-J. Kim, J.-H. Jang, T.-G. Kwon, Y.-C. Bae, and J.-Y. Suh, Effects of Phosphoric Acid Treatment of Titanium Surfaces on Surface Properties, Osteoblast Response and Removal of Torque Forces, Acta Biomater., 2010, 6(4), p 1661–1670 J.-W. Park, Y.-J. Kim, J.-H. Jang, T.-G. Kwon, Y.-C. Bae, and J.-Y. Suh, Effects of Phosphoric Acid Treatment of Titanium Surfaces on Surface Properties, Osteoblast Response and Removal of Torque Forces, Acta Biomater., 2010, 6(4), p 1661–1670
55.
Zurück zum Zitat A.H. Kheireddine, A.H. Ammouri, T. Lu, O.W. Dillion, Jr., R.F. Hamade, and I.S. Jawahir, An Experimental and Numerical Study of the Effect of Cryogenic Cooling on the Surface Integrity of Drilled Holes in AZ31B Mg Alloy, Int. J. Adv. Manuf. Technol., 2015, 78, p 269–279 A.H. Kheireddine, A.H. Ammouri, T. Lu, O.W. Dillion, Jr., R.F. Hamade, and I.S. Jawahir, An Experimental and Numerical Study of the Effect of Cryogenic Cooling on the Surface Integrity of Drilled Holes in AZ31B Mg Alloy, Int. J. Adv. Manuf. Technol., 2015, 78, p 269–279
56.
Zurück zum Zitat A. Balakrishnan, B.C. Lee, T.N. Kim, and B. Panigrahi, Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid, Trends Biomater. Artif. Organs, 2008, 22(1), p 58–64 A. Balakrishnan, B.C. Lee, T.N. Kim, and B. Panigrahi, Corrosion Behaviour of Ultra Fine Grained Titanium in Simulated Body Fluid, Trends Biomater. Artif. Organs, 2008, 22(1), p 58–64
Metadaten
Titel
Tailoring Surface Integrity of Biomedical Mg Alloy AZ31B Using Distinct End Mill Treatment Conditions and Machining Environments
verfasst von
Rahul Davis
Abhishek Singh
Publikationsdatum
02.11.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05203-z

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.