Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2017

01.02.2017 | Research Paper

Tailoring thermal transport properties of graphene by nitrogen doping

verfasst von: Tingting Zhang, Jianhua Li, Yuwei Cao, Liyan Zhu, Guibin Chen

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of two different nitrogen doping configurations, graphite-like and pyridinic-like nitrogen doping (denoted as graphite-N and pyridinic-N hereafter, respectively), on the thermal conduction of graphene is carefully studied via non-equilibrium molecular dynamic (NEMD) simulations. The thermal conductivity is more strongly suppressed in the pyridinic-N-doped graphene than that in the graphite-N-doped sample, which can be well understood from the changes in bond strength between nitrogen and carbon atoms, phonon group velocities, phonon density of states, participation ratio, and phonon transmission. Our study indicates that the pyridinic-N doping is an efficient method to tune the thermal conduction in graphene, especially for the situation where low thermal conductivity is requested, e.g., thermoelectric applications and thermal shielding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bhimanapati GR et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509–11539CrossRef Bhimanapati GR et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509–11539CrossRef
Zurück zum Zitat Chaban VV, Prezhdo OV (2015) Nitrogen–nitrogen bonds undermine stability of N-doped graphene. J Am Chem Soc 137:11688–11694CrossRef Chaban VV, Prezhdo OV (2015) Nitrogen–nitrogen bonds undermine stability of N-doped graphene. J Am Chem Soc 137:11688–11694CrossRef
Zurück zum Zitat Imran Jafri R, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117CrossRef Imran Jafri R, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117CrossRef
Zurück zum Zitat Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477CrossRef
Zurück zum Zitat Kınacı A, Haskins JB, Sevik C, Çağın T (2012) Thermal conductivity of BN-C nanostructures. Phys Rev B 86:115410CrossRef Kınacı A, Haskins JB, Sevik C, Çağın T (2012) Thermal conductivity of BN-C nanostructures. Phys Rev B 86:115410CrossRef
Zurück zum Zitat Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441CrossRef Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441CrossRef
Zurück zum Zitat Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102CrossRef Long D, Li W, Ling L, Miyawaki J, Mochida I, Yoon S-H (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102CrossRef
Zurück zum Zitat Mortazavi B, Rajabpour A, Ahzi S, Rémond Y, Mehdi Vaez Allaei S (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152:261–264CrossRef Mortazavi B, Rajabpour A, Ahzi S, Rémond Y, Mehdi Vaez Allaei S (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152:261–264CrossRef
Zurück zum Zitat Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
Zurück zum Zitat Panchakarla L, Subrahmanyam K, Saha S, Govindaraj A, Krishnamurthy H, Waghmare U, Rao C (2009) Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv Mater 21:4726–4730 Panchakarla L, Subrahmanyam K, Saha S, Govindaraj A, Krishnamurthy H, Waghmare U, Rao C (2009) Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv Mater 21:4726–4730
Zurück zum Zitat Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 117:1–19 Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 117:1–19
Zurück zum Zitat Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free Electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free Electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326CrossRef
Zurück zum Zitat Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRef Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342CrossRef
Zurück zum Zitat Sääskilahti K, Oksanen J, Volz S, Tulkki J (2015) Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B 91:115426CrossRef Sääskilahti K, Oksanen J, Volz S, Tulkki J (2015) Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B 91:115426CrossRef
Zurück zum Zitat Shao Y et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRef Shao Y et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496CrossRef
Zurück zum Zitat Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
Zurück zum Zitat Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882CrossRef Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882CrossRef
Zurück zum Zitat Usachov D et al (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407CrossRef Usachov D et al (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11:5401–5407CrossRef
Zurück zum Zitat Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical Biosensing. ACS Nano 4:1790–1798CrossRef Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical Biosensing. ACS Nano 4:1790–1798CrossRef
Zurück zum Zitat Wang H et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434CrossRef Wang H et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434CrossRef
Zurück zum Zitat Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRef
Zurück zum Zitat Wang Y, Vallabhaneni AK, Qiu B, Ruan X (2014) Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys Eng 18:155–182CrossRef Wang Y, Vallabhaneni AK, Qiu B, Ruan X (2014) Two-dimensional thermal transport in graphene: a review of numerical modeling studies. Nanoscale Microscale Thermophys Eng 18:155–182CrossRef
Zurück zum Zitat Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689 Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689
Zurück zum Zitat Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRef Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176CrossRef
Zurück zum Zitat Zhang T, Zhu L (2017) Giant reduction of thermal conductivity in a two-dimensional nitrogenated holey C2N nanosheet. Phys Chem Chem Phys 19:1757–1761 Zhang T, Zhu L (2017) Giant reduction of thermal conductivity in a two-dimensional nitrogenated holey C2N nanosheet. Phys Chem Chem Phys 19:1757–1761
Zurück zum Zitat Zhang T, Zhu L, Chen G (2015) Suppressed thermal conductivity of ultrathin carbon nanotube(2, 1) upon hydrogenation. J Chem Phys 143:114710CrossRef Zhang T, Zhu L, Chen G (2015) Suppressed thermal conductivity of ultrathin carbon nanotube(2, 1) upon hydrogenation. J Chem Phys 143:114710CrossRef
Zurück zum Zitat Zhu L, Li B (2014) Low thermal conductivity in ultrathin carbon nanotube (2, 1). Sci Rep 4:4917 Zhu L, Li B (2014) Low thermal conductivity in ultrathin carbon nanotube (2, 1). Sci Rep 4:4917
Metadaten
Titel
Tailoring thermal transport properties of graphene by nitrogen doping
verfasst von
Tingting Zhang
Jianhua Li
Yuwei Cao
Liyan Zhu
Guibin Chen
Publikationsdatum
01.02.2017
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2017
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-017-3749-2

Weitere Artikel der Ausgabe 2/2017

Journal of Nanoparticle Research 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.