Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.10.2011 | Original Article | Ausgabe 4/2011

Engineering with Computers 4/2011

Task scheduling with ANN-based temperature prediction in a data center: a simulation-based study

Zeitschrift:
Engineering with Computers > Ausgabe 4/2011
Autoren:
Lizhe Wang, Gregor von Laszewski, Fang Huang, Jai Dayal, Tom Frulani, Geoffrey Fox

Abstract

High temperatures within a data center can cause a number of problems, such as increased cooling costs and increased hardware failure rates. To overcome this problem, researchers have shown that workload management, focused on a data center’s thermal properties, effectively reduces temperatures within a data center. In this paper, we propose a method to predict a workload’s thermal effect on a data center, which will be suitable for real-time scenarios. We use machine learning techniques, such as artificial neural networks (ANN) as our prediction methodology. We use real data taken from a data center’s normal operation to conduct our experiments. To reduce the data’s complexity, we introduce a thermal impact matrix to capture the spacial relationship between the data center’s heat sources, such as the compute nodes. Our results show that machine learning techniques can predict the workload’s thermal effects in a timely manner, thus making them well suited for real-time scenarios. Based on the temperature prediction techniques, we developed a thermal-aware workload scheduling algorithm for data centers, which aims to reduce power consumption and temperatures in a data center. A simulation study is carried out to evaluate the performance of the algorithm. Simulation results show that our algorithm can significantly reduce temperatures in data centers by introducing an endurable decline in performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2011

Engineering with Computers 4/2011 Zur Ausgabe