Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 4/2020

01.10.2020 | MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Taxonomy of Performance Measures for Contrast Enhancement

verfasst von: D. Vijayalakshmi, Malaya Kumar Nath

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Contrast enhancement is a primitive step in image processing application for enhancing the visual perceptibility which can be treated as the increase in gray level differences between background and foreground with suppression of noises. In literature, various methods have been proposed for contrast enhancement such as bi- histogram and two-dimensional histogram-based methods, etc. Among various methods, the suitable contrast enhancement algorithm should be chosen based on different applications. To find suitability, qualitative and quantitative analysis is also needed. The quantitative analysis can be done with the help of the various performance measures. In this paper, a complete taxonomy of performance measure for contrast enhancement has been discussed and analyzed for the CSIQ database. Among the various performance measures, it is found that Absolute Mean Brightness Error (AMBE), entropy, contrast improvement index, and gradient magnitude similarity deviation (GMSD) are better in terms of the range of operation and the wide variation of low contrast images. It is interpreted that absolute mean brightness requires less time for computation and it is widely used by the researchers for quantitative analysis of contrast enhancement algorithm. This study provides a critical analysis of the several quantitative measures that validate the effectiveness of qualitative measures and motivates to propose an alternate measure that considers the strength of various measures discussed in the literature. These measures quantify the mean brightness shifting, contrast, and entropy preservation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Raju and M. S. Nair, “A fast and efficient color image enhancement method based on fuzzy-logic and histogram,” AEU—Int. J. Electron. Commun. 68 (3), 237–243 (2014).CrossRef G. Raju and M. S. Nair, “A fast and efficient color image enhancement method based on fuzzy-logic and histogram,” AEU—Int. J. Electron. Commun. 68 (3), 237–243 (2014).CrossRef
2.
Zurück zum Zitat Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so difficult?,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (2002), Vol. 4, pp. I3313–3316. Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so difficult?,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (2002), Vol. 4, pp. I3313–3316.
3.
Zurück zum Zitat P. Mohammadi, A. Ebrahimi-Moghadam, and S. Shirani, “Subjective and objective quality assessment of image: A survey” (2014). arXiv:abs/1406.7799. P. Mohammadi, A. Ebrahimi-Moghadam, and S. Shirani, “Subjective and objective quality assessment of image: A survey” (2014). arXiv:abs/1406.7799.
4.
Zurück zum Zitat R. C.Gonzalez, Digital Image Processing (Pearson Prentice Hall Publ., 1992). R. C.Gonzalez, Digital Image Processing (Pearson Prentice Hall Publ., 1992).
5.
6.
Zurück zum Zitat Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consum. Electron. 45 (1), 68–75 (1999).CrossRef Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal area dualistic sub-image histogram equalization method,” IEEE Trans. Consum. Electron. 45 (1), 68–75 (1999).CrossRef
7.
Zurück zum Zitat M. K. Nath and S. Dandapat, “Differential entropy in wavelet sub-band for assessment of glaucoma,” Int. J. Imaging Syst. Technol. 22, 161–165 (2012).CrossRef M. K. Nath and S. Dandapat, “Differential entropy in wavelet sub-band for assessment of glaucoma,” Int. J. Imaging Syst. Technol. 22, 161–165 (2012).CrossRef
8.
Zurück zum Zitat S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10 (3), 367–382 (2001).CrossRef S. S. Agaian, K. Panetta, and A. M. Grigoryan, “Transform-based image enhancement algorithms with performance measure,” IEEE Trans. Image Process. 10 (3), 367–382 (2001).CrossRef
9.
Zurück zum Zitat Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9 (3), 81–84 (2002).CrossRef Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9 (3), 81–84 (2002).CrossRef
10.
Zurück zum Zitat Y.-T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Trans. Consum. Electron. 43 (1), 1–8 (1997).CrossRef Y.-T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Trans. Consum. Electron. 43 (1), 1–8 (1997).CrossRef
11.
Zurück zum Zitat S. D. Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Trans. Consum. Electron. 49 (4), 1310–1319 (2003).CrossRef S. D. Chen and A. R. Ramli, “Minimum mean brightness error bi-histogram equalization in contrast enhancement,” IEEE Trans. Consum. Electron. 49 (4), 1310–1319 (2003).CrossRef
12.
Zurück zum Zitat M. Kar, R. Giritharan, P. Elangovan, and M. Kumar, “Analysis of diagnostic features from Fundus image using multiscale wavelet decomposition,” ICIC Express Lett., Part B: Appl. 10, 175–184 (2019). M. Kar, R. Giritharan, P. Elangovan, and M. Kumar, “Analysis of diagnostic features from Fundus image using multiscale wavelet decomposition,” ICIC Express Lett., Part B: Appl. 10, 175–184 (2019).
13.
Zurück zum Zitat P. Zeng, H. Dong, J. Chi, and X. Xu, “An approach for wavelet based image enhancement,” in 2004 IEEE International Conference on Robotics and Biomimetics (2004), pp. 574–577. P. Zeng, H. Dong, J. Chi, and X. Xu, “An approach for wavelet based image enhancement,” in 2004 IEEE International Conference on Robotics and Biomimetics (2004), pp. 574–577.
14.
Zurück zum Zitat J. Shin and R. Park, “Histogram-based locality-preserving contrast enhancement,” IEEE Signal Process. Lett. 22 (9), 1293–1296 (2015).CrossRef J. Shin and R. Park, “Histogram-based locality-preserving contrast enhancement,” IEEE Signal Process. Lett. 22 (9), 1293–1296 (2015).CrossRef
15.
Zurück zum Zitat Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13 (4), 600–612 (2004).CrossRef Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13 (4), 600–612 (2004).CrossRef
16.
Zurück zum Zitat C.-J. Zhang, M.-Y. Fu, M. Jin, and Q.-H. Zhang, “Approach to enhance contrast of infrared image based on wavelet transform,” J. Infrared Millimeter Waves 23, 119–124 (2004). C.-J. Zhang, M.-Y. Fu, M. Jin, and Q.-H. Zhang, “Approach to enhance contrast of infrared image based on wavelet transform,” J. Infrared Millimeter Waves 23, 119–124 (2004).
17.
Zurück zum Zitat S. Aja-Fernandez, R. S. J. Estepar, C. Alberola-Lopez, and C. Westin, “Image quality assessment based on local variance,” in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (2006), pp. 4815–4818. S. Aja-Fernandez, R. S. J. Estepar, C. Alberola-Lopez, and C. Westin, “Image quality assessment based on local variance,” in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (2006), pp. 4815–4818.
18.
Zurück zum Zitat D. Menotti, L. Najman, J. Facon, and A. D. A. Araujo, “Multi-histogram equalization methods for contrast enhancement and brightness preserving,” IEEE Trans. Consum. Electron. 53 (3), 1186–1194 (2007).CrossRef D. Menotti, L. Najman, J. Facon, and A. D. A. Araujo, “Multi-histogram equalization methods for contrast enhancement and brightness preserving,” IEEE Trans. Consum. Electron. 53 (3), 1186–1194 (2007).CrossRef
19.
Zurück zum Zitat S. DelMarco and S. Agaian, “The design of wavelets for image enhancement and target detection,” Mobile Multimedia/Image Process. Secur. Appl. 7351, 11–22 (2009). S. DelMarco and S. Agaian, “The design of wavelets for image enhancement and target detection,” Mobile Multimedia/Image Process. Secur. Appl. 7351, 11–22 (2009).
20.
Zurück zum Zitat M. Qureshi, A. Beghdadi, and M. Deriche, “Towards the design of a consistent image contrast enhancement evaluation measure,” Signal Process. Image Commun. 58 (2017). M. Qureshi, A. Beghdadi, and M. Deriche, “Towards the design of a consistent image contrast enhancement evaluation measure,” Signal Process. Image Commun. 58 (2017).
21.
Zurück zum Zitat N. Sengee and H. K. Choi, “Brightness preserving weight clustering histogram equalization,” IEEE Trans. Consum. Electron. 54 (3), 1329–1337 (2008).CrossRef N. Sengee and H. K. Choi, “Brightness preserving weight clustering histogram equalization,” IEEE Trans. Consum. Electron. 54 (3), 1329–1337 (2008).CrossRef
22.
Zurück zum Zitat C. Gao, K. Panetta, and S. Agaian, “No reference color image quality measures,” in 2013 IEEE International Conference on Cybernetics (CYBCO) (2013), pp. 243–248. C. Gao, K. Panetta, and S. Agaian, “No reference color image quality measures,” in 2013 IEEE International Conference on Cybernetics (CYBCO) (2013), pp. 243–248.
23.
Zurück zum Zitat W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: A highly efficient perceptual image quality index,” IEEE Trans. Image Process. 23 (2), 684–695 (2014).MathSciNetCrossRef W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: A highly efficient perceptual image quality index,” IEEE Trans. Image Process. 23 (2), 684–695 (2014).MathSciNetCrossRef
24.
Zurück zum Zitat M. A. Qureshi, M. Deriche, A. Beghdadi, and M. Mohandes, “An information based framework for performance evaluation of image enhancement methods,” in 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA) (2015), pp. 519–523. M. A. Qureshi, M. Deriche, A. Beghdadi, and M. Mohandes, “An information based framework for performance evaluation of image enhancement methods,” in 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA) (2015), pp. 519–523.
25.
Zurück zum Zitat M. E. Reddy and G. R. Reddy, “Recursive median and mean partitioned one-to-one gray level mapping transformations for image enhancement,” Circuits Syst. Signal Process. 38, 3227–3250 (2019).CrossRef M. E. Reddy and G. R. Reddy, “Recursive median and mean partitioned one-to-one gray level mapping transformations for image enhancement,” Circuits Syst. Signal Process. 38, 3227–3250 (2019).CrossRef
26.
Zurück zum Zitat E. C. Larson, “Most apparent distortion: Full-reference image quality assessment and the role of strategy,” J. Electron. Imaging 19 (1), 011006 (2010).CrossRef E. C. Larson, “Most apparent distortion: Full-reference image quality assessment and the role of strategy,” J. Electron. Imaging 19 (1), 011006 (2010).CrossRef
27.
Zurück zum Zitat T. Celik and H.-C. Li, “Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement,” J. Mod. Opt. 63 (16), 1600–1617 (2016).MathSciNetCrossRef T. Celik and H.-C. Li, “Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement,” J. Mod. Opt. 63 (16), 1600–1617 (2016).MathSciNetCrossRef
Metadaten
Titel
Taxonomy of Performance Measures for Contrast Enhancement
verfasst von
D. Vijayalakshmi
Malaya Kumar Nath
Publikationsdatum
01.10.2020
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2020
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661820040240

Weitere Artikel der Ausgabe 4/2020

Pattern Recognition and Image Analysis 4/2020 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Survey of Learning Based Single Image Super-Resolution Reconstruction Technology

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING

Tight Semi-nonnegative Matrix Factorization