Skip to main content
Erschienen in: Cellulose 11/2019

06.06.2019 | Original Research

TBAH/Urea/H2O solvent for room temperature wet-spinning of cellulose and optimization of drawing process

Erschienen in: Cellulose | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

TBAH(tetra-butylammonium hydroxide)/Urea/H2O solvent has been applied for the solvent wet-spinning of cellulose, due to its room temperature operation, good stability and spinnability of the cellulose solution, as well as the unconditional string of low DP (degree of polymerization) for dissolving cellulose. Most importantly, it is found that the stability of the cellulose solution can be dramatically improved by the addition of urea, as indicated by the rheological property of the cellulose solution. With the help of urea, it has been preliminarily studied about the effect of the drawing process, including tnf (time for the formation of nascent fiber in coagulation bath), δ1 (primary drawing ratio) and δ2 (secondary drawing ratio), on the orientation structure and the mechanical performances of the spun fibers. The correlations between the drawing process and the mechanical performance have been established by mathematical models. The tensile strength of the spun fibers improved up to ca. 96% (1.3 cN/dtex) through our optimization of the drawing process. Morphological observations indicated that the spun fibers exhibited regular shape with a circular cross-section. X-ray diffraction and scattering analysis demonstrated that the orientation structure of fibers spun by TBAH/Urea/H2O is similar to that of the commercial viscose and Tencel fibers.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48(12):1808–1810CrossRef Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun 48(12):1808–1810CrossRef
Zurück zum Zitat Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086CrossRef Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23(2):1073–1086CrossRef
Zurück zum Zitat Alves L, Medronho B, Antunes FE et al (2015) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23(1):247–258CrossRef Alves L, Medronho B, Antunes FE et al (2015) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23(1):247–258CrossRef
Zurück zum Zitat Bao Y, Qian H-J, Lu Z-Y et al (2015) Revealing the hydrophobicity of natural cellulose by single-molecule experiments. Macromolecules 48(11):3685–3690CrossRef Bao Y, Qian H-J, Lu Z-Y et al (2015) Revealing the hydrophobicity of natural cellulose by single-molecule experiments. Macromolecules 48(11):3685–3690CrossRef
Zurück zum Zitat Biermann O, Hadicke E, Koltzenburg S et al (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40(20):3822–3825CrossRef Biermann O, Hadicke E, Koltzenburg S et al (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40(20):3822–3825CrossRef
Zurück zum Zitat Budtova T, Navard P (2015) Viscosity-temperature dependence and activation energy of cellulose solutions. Nord Pulp Pap Res J 30(1):99–105CrossRef Budtova T, Navard P (2015) Viscosity-temperature dependence and activation energy of cellulose solutions. Nord Pulp Pap Res J 30(1):99–105CrossRef
Zurück zum Zitat Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189CrossRef
Zurück zum Zitat Cai J, Zhang L, Zhou J et al (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25(17):1558–1562CrossRef Cai J, Zhang L, Zhou J et al (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25(17):1558–1562CrossRef
Zurück zum Zitat Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19(6):821–825CrossRef Cai J, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19(6):821–825CrossRef
Zurück zum Zitat Cao J, Wei W, Gou G et al (2018) Cellulose films from the aqueous DMSO/TBAH-system. Cellulose 25(3):1975–1986CrossRef Cao J, Wei W, Gou G et al (2018) Cellulose films from the aqueous DMSO/TBAH-system. Cellulose 25(3):1975–1986CrossRef
Zurück zum Zitat Chen X, Burger C, Fang D et al (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef Chen X, Burger C, Fang D et al (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848CrossRef
Zurück zum Zitat Chen X, Burger C, Wan F et al (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NAOH/urea aqueous solutions. Biomacromolecules 8:1918–1926CrossRef Chen X, Burger C, Wan F et al (2007) Structure study of cellulose fibers wet-spun from environmentally friendly NAOH/urea aqueous solutions. Biomacromolecules 8:1918–1926CrossRef
Zurück zum Zitat Chen J, Guan Y, Wang K et al (2015) Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydr Polym 128:147–153CrossRef Chen J, Guan Y, Wang K et al (2015) Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydr Polym 128:147–153CrossRef
Zurück zum Zitat Chen X, Chen X, Cai X-M et al (2018) Cellulose dissolution in a mixed solvent of tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide via radical reactions. ACS Sustain Chem Eng 6(3):2898–2904CrossRef Chen X, Chen X, Cai X-M et al (2018) Cellulose dissolution in a mixed solvent of tetra(n-butyl)ammonium hydroxide/dimethyl sulfoxide via radical reactions. ACS Sustain Chem Eng 6(3):2898–2904CrossRef
Zurück zum Zitat Connors K (1990) The study of reaction rates in solution in chemical kinetics. VCH Publishers, New York Connors K (1990) The study of reaction rates in solution in chemical kinetics. VCH Publishers, New York
Zurück zum Zitat Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698CrossRef Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698CrossRef
Zurück zum Zitat Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75(1):90–94CrossRef Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75(1):90–94CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
Zurück zum Zitat Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate–NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2(11):2604–2612CrossRef Fu F, Yang Q, Zhou J et al (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate–NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2(11):2604–2612CrossRef
Zurück zum Zitat Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83(3):1253–1256CrossRef Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83(3):1253–1256CrossRef
Zurück zum Zitat Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose − NaOH − water gels and comparison with cellulose − N-methylmorpholine-N-oxide − water solutions. Biomacromolecules 8(2):424–432CrossRef Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose − NaOH − water gels and comparison with cellulose − N-methylmorpholine-N-oxide − water solutions. Biomacromolecules 8(2):424–432CrossRef
Zurück zum Zitat Gericke M, Schlufter K, Liebert T et al (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194CrossRef Gericke M, Schlufter K, Liebert T et al (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194CrossRef
Zurück zum Zitat Glasser WG, Atalla RH, Blackwell J et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598CrossRef Glasser WG, Atalla RH, Blackwell J et al (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598CrossRef
Zurück zum Zitat Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York
Zurück zum Zitat Hermans PH (1949) Physics and chemistry of cellulose fibres. Elsevier, Amsterdam Hermans PH (1949) Physics and chemistry of cellulose fibres. Elsevier, Amsterdam
Zurück zum Zitat Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66CrossRef Kosan B, Michels C, Meister F (2007) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66CrossRef
Zurück zum Zitat Li R, Chang C, Zhou J et al (2010) Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution. Ind Eng Chem Res 49:11380–11384CrossRef Li R, Chang C, Zhou J et al (2010) Primarily industrialized trial of novel fibers spun from cellulose dope in NaOH/urea aqueous solution. Ind Eng Chem Res 49:11380–11384CrossRef
Zurück zum Zitat Li X-Y, Zheng Z-B, Yu D-G et al (2017) Electrosprayed sperical ethylcellulose nanoparticles for an improved sustained-release profile of anticancer drug. Cellulose 24(12):5551–5564CrossRef Li X-Y, Zheng Z-B, Yu D-G et al (2017) Electrosprayed sperical ethylcellulose nanoparticles for an improved sustained-release profile of anticancer drug. Cellulose 24(12):5551–5564CrossRef
Zurück zum Zitat Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81CrossRef Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156(1):76–81CrossRef
Zurück zum Zitat Liu X, Yang Y, Yu D-G et al (2019) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 356:886–894CrossRef Liu X, Yang Y, Yu D-G et al (2019) Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem Eng J 356:886–894CrossRef
Zurück zum Zitat Lu A, Liu Y, Zhang L et al (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115(44):12801–12808CrossRef Lu A, Liu Y, Zhang L et al (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115(44):12801–12808CrossRef
Zurück zum Zitat Lu F, Wang L, Zhang C et al (2015) Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Cellulose 22(5):3077–3087CrossRef Lu F, Wang L, Zhang C et al (2015) Influence of temperature on the solution rheology of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethyl sulfoxide. Cellulose 22(5):3077–3087CrossRef
Zurück zum Zitat Lue A, Zhang L (2009) Rheological behaviors in the regimes from dilute to concentrated in cellulose solutions dissolved at low temperature. Macromol Biosci 9(5):488–496CrossRef Lue A, Zhang L (2009) Rheological behaviors in the regimes from dilute to concentrated in cellulose solutions dissolved at low temperature. Macromol Biosci 9(5):488–496CrossRef
Zurück zum Zitat Mazza M, Catana D-A, Vaca-Garcia C et al (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef Mazza M, Catana D-A, Vaca-Garcia C et al (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRef
Zurück zum Zitat Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRef Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel MG et al (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587CrossRef Medronho B, Romano A, Miguel MG et al (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587CrossRef
Zurück zum Zitat Meessen JH (2012) Urea in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Meessen JH (2012) Urea in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Zurück zum Zitat Olsson C, Idstrom A, Nordstierna L et al (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446CrossRef Olsson C, Idstrom A, Nordstierna L et al (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446CrossRef
Zurück zum Zitat Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15(6):779–787CrossRef Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15(6):779–787CrossRef
Zurück zum Zitat Qi H, Yang Q, Zhang L et al (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245CrossRef Qi H, Yang Q, Zhang L et al (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245CrossRef
Zurück zum Zitat Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775CrossRef Rabideau BD, Ismail AE (2015) Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content. Phys Chem Chem Phys 17:5767–5775CrossRef
Zurück zum Zitat Rosenau T, Potthast A, Sixta H et al (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837CrossRef Rosenau T, Potthast A, Sixta H et al (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837CrossRef
Zurück zum Zitat Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264CrossRef Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose–NaOH solutions. Biomacromolecules 4:259–264CrossRef
Zurück zum Zitat Ruland W (1969) Small-angle scattering studies on carbonized cellulose fibers. J Polym Sci Part C 28:143–151CrossRef Ruland W (1969) Small-angle scattering studies on carbonized cellulose fibers. J Polym Sci Part C 28:143–151CrossRef
Zurück zum Zitat Sescousse R, Le KA, Ries ME et al (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228CrossRef Sescousse R, Le KA, Ries ME et al (2010) Viscosity of cellulose-imidazolium-based ionic liquid solutions. J Phys Chem B 114:7222–7228CrossRef
Zurück zum Zitat Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a High-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30(1):43–57CrossRef Sixta H, Michud A, Hauru L et al (2015) Ioncell-F: a High-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30(1):43–57CrossRef
Zurück zum Zitat Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef
Zurück zum Zitat Vehviläinen M, Kamppuri T, Rom M et al (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15(5):671–680CrossRef Vehviläinen M, Kamppuri T, Rom M et al (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15(5):671–680CrossRef
Zurück zum Zitat Vickers ME, Briggs NP, Ibbett RN et al (2001) Small angle X-ray scattering studies on lyocell cellulosic fibres: the effects of drying, re-wetting and changing coagulation temperature. Polymer 42:8241–8248CrossRef Vickers ME, Briggs NP, Ibbett RN et al (2001) Small angle X-ray scattering studies on lyocell cellulosic fibres: the effects of drying, re-wetting and changing coagulation temperature. Polymer 42:8241–8248CrossRef
Zurück zum Zitat Wang W, Zhang P, Zhang S et al (2013) Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohydr Polym 98:1031–1038CrossRef Wang W, Zhang P, Zhang S et al (2013) Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohydr Polym 98:1031–1038CrossRef
Zurück zum Zitat Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef Wang S, Lu A, Zhang L (2015) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206CrossRef
Zurück zum Zitat Wei W, Wei X, Gou G et al (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083CrossRef Wei W, Wei X, Gou G et al (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083CrossRef
Zurück zum Zitat Wei W, Meng F, Cui Y et al (2017) Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose 24:49–59CrossRef Wei W, Meng F, Cui Y et al (2017) Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose 24:49–59CrossRef
Zurück zum Zitat Weng L, Zhang L, Ruan D et al (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093CrossRef Weng L, Zhang L, Ruan D et al (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086–2093CrossRef
Zurück zum Zitat Wilchinsky ZW (1959) On crystal orientation in polycrystalline materials. J Appl Phys 30(5):792CrossRef Wilchinsky ZW (1959) On crystal orientation in polycrystalline materials. J Appl Phys 30(5):792CrossRef
Zurück zum Zitat Yang Y, Zhang Y, Dawelbeit A et al (2017) Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24(10):4123–4137CrossRef Yang Y, Zhang Y, Dawelbeit A et al (2017) Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24(10):4123–4137CrossRef
Zurück zum Zitat You J, Zhou J, Li Q et al (2012) Rheological study of physical cross-linked quaternized cellulose hydrogels induced by beta-glycerophosphate. Langmuir 28(11):4965–4973CrossRef You J, Zhou J, Li Q et al (2012) Rheological study of physical cross-linked quaternized cellulose hydrogels induced by beta-glycerophosphate. Langmuir 28(11):4965–4973CrossRef
Zurück zum Zitat Yu DG, Li JJ, Williams GR et al (2018) Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Controlled Release 292:91–110CrossRef Yu DG, Li JJ, Williams GR et al (2018) Electrospun amorphous solid dispersions of poorly water-soluble drugs: a review. J Controlled Release 292:91–110CrossRef
Zurück zum Zitat Zhang DRALL (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036CrossRef Zhang DRALL (2008) Gelation behaviors of cellulose solution dissolved in aqueous NaOH/thiourea at low temperature. Polymer 49:1027–1036CrossRef
Zurück zum Zitat Zhao Y, Liu X, Wang J et al (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117(30):9042–9049CrossRef Zhao Y, Liu X, Wang J et al (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117(30):9042–9049CrossRef
Metadaten
Titel
TBAH/Urea/H2O solvent for room temperature wet-spinning of cellulose and optimization of drawing process
Publikationsdatum
06.06.2019
Erschienen in
Cellulose / Ausgabe 11/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02536-4

Weitere Artikel der Ausgabe 11/2019

Cellulose 11/2019 Zur Ausgabe