Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 9/2021

22.06.2021 | Original Paper

TBM Cutter Wear Under High-Strength Surrounding Rock Conditions: A Case Study from the Second Phase of the Northern Xinjiang Water Supply Project

verfasst von: Zhengliang Zhou, Zhongsheng Tan, Zonglin Li, Dong Ma, Lilong Zhang

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 9/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cutter wear is an important factor affecting the efficiency of tunnel boring machines (TBMs). In this paper, using a case study from the tunnel project of the XEVIII section of the second phase of the northern Xinjiang water supply project, cutter wear under conditions of high-strength (average strength 120 MPa) surrounding rock is studied. The results show that the cumulative wear of the center cutters and the front cutters increases exponentially with an increase of installation radius, and the cumulative wear of the edge cutters is affected by the installation angle, which increases at first and then decreases with an increase of the installation radius. The single cutter wear of the edge cutters is the largest, of the front cutters is the second largest, and of the center cutters is the smallest. With an increase of surrounding rock strength, the wear of the center cutters and front cutters increases exponentially, and the wear of the edge cutters increases based on a quadratic function per meter, while the cumulative wear per meter increases linearly. Volumetric mass loss increases exponentially with the increase of surrounding rock strength and Cerchar abrasion index and decreases logarithmically with the increase of cutter life index. When the surrounding rock strength is constant, when the revolutions per minute, torque, thrust, and penetration per revolution increase, the cutter wear per meter changes following a quadratic function, which first increases and then decreases. With the increase of penetration rate, the cutter wear per meter changes as a quadratic function, first decreasing and then increasing. Cutter wear is most sensitive to cutter head torque and thrust. In order to reduce cutter wear, it is suggested that cutter head torque should be limited to the range 1100–1300 kN m or 2100–2400 kN m, and the thrust should be limited to the range 9500–11,000 kN or 15,500–16,000 kN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bieniawski ZT, Celada CB, Galera JM, Tardaguila IG (2009) Prediction of cutter wear using RME. ITA-AITES World Tunnel Congress, Budapest Bieniawski ZT, Celada CB, Galera JM, Tardaguila IG (2009) Prediction of cutter wear using RME. ITA-AITES World Tunnel Congress, Budapest
Zurück zum Zitat Blindheim OT (1979) Boreability predictions for tunneling. Dissertation, Norwegian University of Science and Technology Blindheim OT (1979) Boreability predictions for tunneling. Dissertation, Norwegian University of Science and Technology
Zurück zum Zitat Bruland A (1998) Hard rock tunnel boring. Dissertation, Norwegian University of Science and Technology Bruland A (1998) Hard rock tunnel boring. Dissertation, Norwegian University of Science and Technology
Zurück zum Zitat Cheema S (1999) Development of a rock mass boreability index for the performance of tunnel boring machines. Dissertation, Colorado School of Mines Cheema S (1999) Development of a rock mass boreability index for the performance of tunnel boring machines. Dissertation, Colorado School of Mines
Zurück zum Zitat Frenzel C (2011) Disc cutter wear phenomenology and their implications on disc cutter consumption for TBM. In: 45th American rock mechanics/geomechanics symposium. San Francisco, USA Frenzel C (2011) Disc cutter wear phenomenology and their implications on disc cutter consumption for TBM. In: 45th American rock mechanics/geomechanics symposium. San Francisco, USA
Zurück zum Zitat Gehring K (1995) Prognosis of advance rates and wear for underground mechanized excavations. Felsbau 13(6):439–448 (in German) Gehring K (1995) Prognosis of advance rates and wear for underground mechanized excavations. Felsbau 13(6):439–448 (in German)
Zurück zum Zitat Grødal CK (2012) Wear and corrosion properties of steels used in Tunnel Boring Machines Dissertation, Norwegian University of Science and Technology Grødal CK (2012) Wear and corrosion properties of steels used in Tunnel Boring Machines Dissertation, Norwegian University of Science and Technology
Zurück zum Zitat Huang MH, Chen LY (2020) Analysis of sensitive factors of deep foundation pit support based on grey relational degree. J Shantou Univ (nat Sci) 35(01):16–32 (in Chinese) Huang MH, Chen LY (2020) Analysis of sensitive factors of deep foundation pit support based on grey relational degree. J Shantou Univ (nat Sci) 35(01):16–32 (in Chinese)
Zurück zum Zitat Käsling H, Thuro K (2010) Determining abrasivity of rock and soil in the laboratory. Geol Act 1(1):1973–1980 Käsling H, Thuro K (2010) Determining abrasivity of rock and soil in the laboratory. Geol Act 1(1):1973–1980
Zurück zum Zitat Macias FJ (2016) Hard rock tunnel boring: performance predictions and cutter life assessments. Dissertation, Norwegian University of Science and Technology Macias FJ (2016) Hard rock tunnel boring: performance predictions and cutter life assessments. Dissertation, Norwegian University of Science and Technology
Zurück zum Zitat Rostami J (1997) Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Dissertation, Colorado School of Mines Rostami J (1997) Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Dissertation, Colorado School of Mines
Zurück zum Zitat Yagiz S (2002) Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machines. Dissertation, Colorado School of Mines Yagiz S (2002) Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM model basic penetration for hard rock tunneling machines. Dissertation, Colorado School of Mines
Zurück zum Zitat Zhang JM, Tang ZC, Liu QS (2015) Relation between point load index and uniaxial compressive strength for igneous rock. Rock Soil Mech S2:595–602 (in Chinese) Zhang JM, Tang ZC, Liu QS (2015) Relation between point load index and uniaxial compressive strength for igneous rock. Rock Soil Mech S2:595–602 (in Chinese)
Metadaten
Titel
TBM Cutter Wear Under High-Strength Surrounding Rock Conditions: A Case Study from the Second Phase of the Northern Xinjiang Water Supply Project
verfasst von
Zhengliang Zhou
Zhongsheng Tan
Zonglin Li
Dong Ma
Lilong Zhang
Publikationsdatum
22.06.2021
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 9/2021
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-021-02545-5

Weitere Artikel der Ausgabe 9/2021

Rock Mechanics and Rock Engineering 9/2021 Zur Ausgabe