Skip to main content

2016 | OriginalPaper | Buchkapitel

6. Techniques for PBI Membrane Characterization

verfasst von : Dirk Henkensmeier, David Aili

Erschienen in: High Temperature Polymer Electrolyte Membrane Fuel Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter describes common methods for membrane characterization. While it does not go into theoretical depths, general explanations, limitations, practical notes, and critical comments are provided. Covered methods include determination of water uptake and acid doping level, measurement of proton conductivity, molecular weight analysis by viscosity and size exclusion chromatography, determination of solubility and gel content, filtration of polymer solutions, characterization of mechanical properties (tensile testing, compression and creep tests, dynamic mechanical analysis), permeability of hydrogen and methanol and electroosmotic drag of water as well as definition and control of humidity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef
2.
Zurück zum Zitat Yuan Y, Johnson F, Cabasso I (2009) Polybenzimidazole (PBI) molecular weight and Mark-Houwink equation. J Appl Polym Sci 112:3436–3441CrossRef Yuan Y, Johnson F, Cabasso I (2009) Polybenzimidazole (PBI) molecular weight and Mark-Houwink equation. J Appl Polym Sci 112:3436–3441CrossRef
3.
Zurück zum Zitat Buckley A, Stuetz D, Serad GA (1987) Polybenzimidazoles. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering. Wiley, New York, pp 572–601 Buckley A, Stuetz D, Serad GA (1987) Polybenzimidazoles. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering. Wiley, New York, pp 572–601
4.
Zurück zum Zitat Savinell RF, Wainright JS, Litt M (1998) High temperature polymer electrolyte fuel cells. In: Gottesfeld S, Fuller TF (eds) Electrochemical Society Series. 98(27):81–90 Savinell RF, Wainright JS, Litt M (1998) High temperature polymer electrolyte fuel cells. In: Gottesfeld S, Fuller TF (eds) Electrochemical Society Series. 98(27):81–90
5.
Zurück zum Zitat Kojima T, Yokota R, Kochi M et al (1980) Dilute solution properties of a polybenzimidazole. J Polym Sci B 18:1673–1683 Kojima T, Yokota R, Kochi M et al (1980) Dilute solution properties of a polybenzimidazole. J Polym Sci B 18:1673–1683
6.
Zurück zum Zitat Liao JH, Li QF, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755CrossRef Liao JH, Li QF, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755CrossRef
7.
Zurück zum Zitat Choe EW, Conciatori AB (1985) Aminoaryl ester reactant, two-stage melt polymerization. US Patent 4,535,144 Choe EW, Conciatori AB (1985) Aminoaryl ester reactant, two-stage melt polymerization. US Patent 4,535,144
8.
Zurück zum Zitat Gulledge AL, Chen X, Benicewicz BC (2014) Investigation of sequence isomer effects in AB-polybenzimidazole polymers. J Polym Sci A Polym Chem 52:619–628CrossRef Gulledge AL, Chen X, Benicewicz BC (2014) Investigation of sequence isomer effects in AB-polybenzimidazole polymers. J Polym Sci A Polym Chem 52:619–628CrossRef
9.
Zurück zum Zitat Han JY, Lee JY, Kim HY et al (2014) Synthesis and characterization of fluorene-based polybenzimidazole copolymer for gas separation. J Appl Polym Sci 131:40521 Han JY, Lee JY, Kim HY et al (2014) Synthesis and characterization of fluorene-based polybenzimidazole copolymer for gas separation. J Appl Polym Sci 131:40521
10.
Zurück zum Zitat Ng F, Bae B, Miyatake K et al (2011) Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem Commun 47:8895–8897CrossRef Ng F, Bae B, Miyatake K et al (2011) Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem Commun 47:8895–8897CrossRef
11.
Zurück zum Zitat Dominguez PH, Grygiel K, Weber J (2014) Nanostructured poly(benzimidazole) membranes by N-alkylation. eXPRESS Polym Lett 8:30–38CrossRef Dominguez PH, Grygiel K, Weber J (2014) Nanostructured poly(benzimidazole) membranes by N-alkylation. eXPRESS Polym Lett 8:30–38CrossRef
12.
Zurück zum Zitat Huang W, Qing SB, Yang JT et al (2008) Preparation and characterization of soluble sulfonated polybenzimidazole for proton exchange membrane materials. Chinese J Polym Sci 26:121–129CrossRef Huang W, Qing SB, Yang JT et al (2008) Preparation and characterization of soluble sulfonated polybenzimidazole for proton exchange membrane materials. Chinese J Polym Sci 26:121–129CrossRef
13.
Zurück zum Zitat Robinson RA (2005) The water activities of lithium chloride solutions up to high concentrations at 25°. Trans Faraday Soc 41:756-758 Robinson RA (2005) The water activities of lithium chloride solutions up to high concentrations at 25°. Trans Faraday Soc 41:756-758
14.
Zurück zum Zitat Li Q, He R, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 168:177–185CrossRef Li Q, He R, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 168:177–185CrossRef
15.
Zurück zum Zitat Majerus A, Conti F, Korte C et al (2012) Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. Abstract 1510. Paper presented at Honolulu PRiME 2012, Honolulu, 7–9 October 2012 Majerus A, Conti F, Korte C et al (2012) Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. Abstract 1510. Paper presented at Honolulu PRiME 2012, Honolulu, 7–9 October 2012
16.
Zurück zum Zitat Mader JA, Benicewicz BC (2011) Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells. Fuel Cells 11:222–237CrossRef Mader JA, Benicewicz BC (2011) Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells. Fuel Cells 11:222–237CrossRef
17.
Zurück zum Zitat Lee HJ, Lee DH, Henkensmeier D et al (2012) Synthesis and characterization of H3PO4 doped poly(benzimidazole-co-benzoxazole) membranes for high temperature polymer electrolyte fuel cells. Bull Korean Chem Soc 33:3279–3284CrossRef Lee HJ, Lee DH, Henkensmeier D et al (2012) Synthesis and characterization of H3PO4 doped poly(benzimidazole-co-benzoxazole) membranes for high temperature polymer electrolyte fuel cells. Bull Korean Chem Soc 33:3279–3284CrossRef
18.
Zurück zum Zitat Li X, Chen X, Benicewicz BC (2013) Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). J Power Sources 243:796–804CrossRef Li X, Chen X, Benicewicz BC (2013) Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). J Power Sources 243:796–804CrossRef
19.
Zurück zum Zitat Hasiotis C, Li Q, Deimede V et al (2001) Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J Electrochem Soc 148:A513–A519CrossRef Hasiotis C, Li Q, Deimede V et al (2001) Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J Electrochem Soc 148:A513–A519CrossRef
20.
Zurück zum Zitat Hanley TR, Helminiak TE, Benner CL (1978) Expansion of aromatic heterocyclic polymers in salt solution. J Appl Polym Sci 22:2965–2978CrossRef Hanley TR, Helminiak TE, Benner CL (1978) Expansion of aromatic heterocyclic polymers in salt solution. J Appl Polym Sci 22:2965–2978CrossRef
21.
Zurück zum Zitat Li X, Qian G, Chen X, Benicewicz BC (2013) Synthesis and characterization of a new fluorine-containing polybenzimidazole (PBI) for proton-conducting membranes in fuel cells. Fuel Cells 13:832–842 Li X, Qian G, Chen X, Benicewicz BC (2013) Synthesis and characterization of a new fluorine-containing polybenzimidazole (PBI) for proton-conducting membranes in fuel cells. Fuel Cells 13:832–842
23.
Zurück zum Zitat Murata M, Nakamura T (1999) Polybenzimidazole compounds in solution and a process for the preparation thereof. US Patent 5,902,876 Murata M, Nakamura T (1999) Polybenzimidazole compounds in solution and a process for the preparation thereof. US Patent 5,902,876
24.
Zurück zum Zitat Belack J, Kundler I, Schmidt TJ (2008) Celtec-MEAs: life time, degradation modes and mitigation strategies. Paper presented at Progress MEA 2008, La Grande Motte, 21–24 September 2008 Belack J, Kundler I, Schmidt TJ (2008) Celtec-MEAs: life time, degradation modes and mitigation strategies. Paper presented at Progress MEA 2008, La Grande Motte, 21–24 September 2008
25.
Zurück zum Zitat Molleo MA, Chen X, Ploehn HJ et al (2014) High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 14:16–25CrossRef Molleo MA, Chen X, Ploehn HJ et al (2014) High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 14:16–25CrossRef
28.
Zurück zum Zitat Iqbal HMS, Bhowmik S, Benedictus R (2014) Process optimization of solvent based polybenzimidazole adhesive for aerospace applications. Int J Adhes Adhes 48:188–193CrossRef Iqbal HMS, Bhowmik S, Benedictus R (2014) Process optimization of solvent based polybenzimidazole adhesive for aerospace applications. Int J Adhes Adhes 48:188–193CrossRef
29.
Zurück zum Zitat He R, Li Q, Bach A et al (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45CrossRef He R, Li Q, Bach A et al (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45CrossRef
30.
Zurück zum Zitat Sakai T, Takenako H, Wakabayashi N et al (1985) Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc 132:1328–1332CrossRef Sakai T, Takenako H, Wakabayashi N et al (1985) Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc 132:1328–1332CrossRef
31.
Zurück zum Zitat Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester, p 304CrossRef Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester, p 304CrossRef
32.
Zurück zum Zitat Kim BG, Henkensmeier D, Kim HJ et al (2014) Sulfonation of PIM-1—towards highly oxygen permeable binders for fuel cell application. Macromol Res 22:92–98CrossRef Kim BG, Henkensmeier D, Kim HJ et al (2014) Sulfonation of PIM-1—towards highly oxygen permeable binders for fuel cell application. Macromol Res 22:92–98CrossRef
33.
Zurück zum Zitat Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831 Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831
34.
Zurück zum Zitat Wang JT, Wasmus S, Savinell RF (1996) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem Soc 143:1233–1238CrossRef Wang JT, Wasmus S, Savinell RF (1996) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem Soc 143:1233–1238CrossRef
35.
Zurück zum Zitat Mamlouk M, Scott K, Hidayati N (2011) High temperature direct methanol fuel cell based on phosphoric acid PBI membrane. J Fuel Cell Sci Technol 8:061009CrossRef Mamlouk M, Scott K, Hidayati N (2011) High temperature direct methanol fuel cell based on phosphoric acid PBI membrane. J Fuel Cell Sci Technol 8:061009CrossRef
36.
Zurück zum Zitat Gubler L, Kramer D, Belack J et al (2007) Celtec-V. A polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987CrossRef Gubler L, Kramer D, Belack J et al (2007) Celtec-V. A polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987CrossRef
37.
Zurück zum Zitat Tricoli V (1998) Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145:3798–3801CrossRef Tricoli V (1998) Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145:3798–3801CrossRef
38.
Zurück zum Zitat Woo Y, Oh SY, Kang YS et al (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45CrossRef Woo Y, Oh SY, Kang YS et al (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45CrossRef
39.
Zurück zum Zitat Yang CC, Lee YJ, Yang JM (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J Power Sources 188:30–37CrossRef Yang CC, Lee YJ, Yang JM (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J Power Sources 188:30–37CrossRef
41.
Zurück zum Zitat Weng D, Wainright JS, Landau U et al (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1260–1263CrossRef Weng D, Wainright JS, Landau U et al (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1260–1263CrossRef
42.
Zurück zum Zitat Luo Z, Chang Z, Zhang Y et al (2010) Electro-osmotic drag coefficient and proton conductivity in Nafion membrane for PEMFC. Int J Hydrogen Energy 35:3120–3124CrossRef Luo Z, Chang Z, Zhang Y et al (2010) Electro-osmotic drag coefficient and proton conductivity in Nafion membrane for PEMFC. Int J Hydrogen Energy 35:3120–3124CrossRef
43.
Zurück zum Zitat Peng Z, Morin A, Huguet P et al (2011) In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC. J Phys Chem B 115:12835–12844CrossRef Peng Z, Morin A, Huguet P et al (2011) In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC. J Phys Chem B 115:12835–12844CrossRef
44.
Zurück zum Zitat Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328CrossRef Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328CrossRef
47.
Zurück zum Zitat Toop DJ (1971) Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul EI-6:2–14CrossRef Toop DJ (1971) Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul EI-6:2–14CrossRef
48.
Zurück zum Zitat Inaba M, Kinumoto T, Kiriake M et al (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim Acta 51:5746–5753CrossRef Inaba M, Kinumoto T, Kiriake M et al (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim Acta 51:5746–5753CrossRef
49.
Zurück zum Zitat Gubler L, Koppenol WH (2012) Kinetic simulation of the chemical stabilization mechanism in fuel cell membranes using cerium and manganese redox couples. J Electrochem Soc 159:B211–B218CrossRef Gubler L, Koppenol WH (2012) Kinetic simulation of the chemical stabilization mechanism in fuel cell membranes using cerium and manganese redox couples. J Electrochem Soc 159:B211–B218CrossRef
50.
Zurück zum Zitat Kinumoto T, Inaba M, Nakayama Y et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef Kinumoto T, Inaba M, Nakayama Y et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228CrossRef
51.
Zurück zum Zitat Chang Z, Pu H, Wan D et al (2010) Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles. Polym Degrad Stab 95:2648–2653CrossRef Chang Z, Pu H, Wan D et al (2010) Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles. Polym Degrad Stab 95:2648–2653CrossRef
52.
Zurück zum Zitat Qian G, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J Polym Sci A Polym Chem 47:4064–4073CrossRef Qian G, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J Polym Sci A Polym Chem 47:4064–4073CrossRef
53.
Zurück zum Zitat Han M, Zhang G, Liu Z, Wang S et al (2011) Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J Mater Chem 21:2187–2193CrossRef Han M, Zhang G, Liu Z, Wang S et al (2011) Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J Mater Chem 21:2187–2193CrossRef
54.
Zurück zum Zitat Liao JH, Yang JS, Li QF et al (2013) Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J Power Sources 238:516–522CrossRef Liao JH, Yang JS, Li QF et al (2013) Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J Power Sources 238:516–522CrossRef
55.
Zurück zum Zitat He RH, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184CrossRef He RH, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184CrossRef
56.
Zurück zum Zitat Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance - revised according to the international temperature scale of 1990. J Phys Chem Ref Data 22:783–787CrossRef Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance - revised according to the international temperature scale of 1990. J Phys Chem Ref Data 22:783–787CrossRef
57.
Zurück zum Zitat Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J Power Sources 102:253–269CrossRef Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J Power Sources 102:253–269CrossRef
58.
Zurück zum Zitat Gibbard HF, Scatchar G (1973) Liquid-vapor equilibrium of aqueous lithium-chloride, from 25° to 100°C and from 1.0 to 18.5 molal, and related properties. J Chem Eng Data 18:293–298CrossRef Gibbard HF, Scatchar G (1973) Liquid-vapor equilibrium of aqueous lithium-chloride, from 25° to 100°C and from 1.0 to 18.5 molal, and related properties. J Chem Eng Data 18:293–298CrossRef
59.
Zurück zum Zitat Schechter A, Savinell RF, Wainright JS et al (2009) 1H and 31P NMR study of phosphoric acid-doped polybenzimidazole under controlled water activity. J Electrochem Soc 156:B283–B290CrossRef Schechter A, Savinell RF, Wainright JS et al (2009) 1H and 31P NMR study of phosphoric acid-doped polybenzimidazole under controlled water activity. J Electrochem Soc 156:B283–B290CrossRef
Metadaten
Titel
Techniques for PBI Membrane Characterization
verfasst von
Dirk Henkensmeier
David Aili
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-17082-4_6