3.
Agarwal, K., Nowka, K., Deogun, H., Sylvester, D.: Power gating with multiple sleep modes. In: Proceedings of the 7th International Symposium on Quality Electronic Design, pp. 633–637. IEEE Computer Society (2006)
4.
Burr, G., Kurdi, B., Scott, J., Lam, C., Gopalakrishnan, K., Shenoy, R.: Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev.
52(4.5), 449–464 (2008). doi:
10.1147/rd.524.0449
CrossRef
5.
Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.: Microarchitectural techniques for power gating of execution units. In: International Symposium on Low Power Electronics and Design, pp. 32–37 (2004). doi:
10.1109/LPE.2004.1349303
6.
Kim, S., Kosonocky, S.V., Knebel, D.R., Stawiasz, K.: Experimental measurement of a novel power gating structure with intermediate power saving mode. In: Proceedings of the 2004 International Symposium on Low Power Electronics and Design, pp. 20–25. IEEE (2004)
7.
Kryder, M.H., Kim, C.S.: After hard drives? what comes next? IEEE Trans. Magn.
45(10), 3406–3413 (2009)
CrossRef
8.
Nakada, T., Okamoto, K., Komoda, T., Miwa, S., Sato, Y., Ueki, H., Hayashikoshi, M., Shimizu, T., Nakamura, H.: Design aid of multi-core embedded systems with energy model. IPSJ Trans. Adv. Comput. Syst.
7(ACS46), 37–46 (2014)
9.
Nakada, T., Shigematsu, T., Komoda, T., Miwa, S., Sato, Y., Ueki, H., Hayashikoshi, M., Shimizu, T., Nakamura, H.: Data-aware power management for periodic real-time systems with non-volatile memory. In: 3rd IEEE Nonvolatile Memory Systems and Applications Symposium (NVMSA), 6 p (2014)
10.
Pakbaznia, E., Pedram, M.: Design and application of multimodal power gating structures. In: 2009 10th International Symposium on Quality Electronic Design, pp. 120–126 (2009). doi:
10.1109/ISQED.2009.4810281
11.
Pollack, F.: Micro32 conference keynote. Intel Corporation (1999)
12.
Puri, R., Stok, L., Bhattacharya, S.: Keeping hot chips cool. In: 42nd Design Automation Conference, pp. 285–288 (2005). doi:
10.1109/DAC.2005.193818
13.
Yoda, H.: Progress of STT-MRAM technology and the effect on normally-off computing systems. In: Session 11.3, Technical Digest of International Electron Devices Meeting (IEDM) (2012)
14.
Kitagawa, E., Fujita, S., Nomura, K., Noguchi, H., Abe, K., Shimomura, N., Ito, J., Yoda, H., Daibou, T., Kato, Y., Kamata, C., Kashiwada, S.: Impact of ultra low power and fast write operation of advance perpendicular MTJ on power reduction for high performance mobile CPU. In: Session 29.4, Technical Digest of International Electron Devices Meeting (IEDM) (2012)
15.
Abe, K., Fujita, S., Lee, T.H.: Architecture of three-dimensional circuit using nanoscale memory devices. European Micro and Nano Systems (EMN04), pp. 225-229, Oct. 2004
16.
Abe, K., Fujita, S., Lee, T.H.: Novel nonvolatile logic circuits with three-dimensionally stacked nanoscale memory device. Proceedings of the 2005 NSTI Nanotechnology Conference
3, 203–206 (2005)
17.
Abe, K., Nomura, K., Ikegawa, S., Kishi, T., Yoda, H., Fujita, S.: Hierarchical nonvolatile memory with perpendicular magnetic tunnel junctions for normally-off computing. In: The 2010 International Conference on Solid State Devices and Materials (SSDM), Tokyo, pp. 1144-1145, Sep. 2010
18.
Yamamoto, S., Sugahara, S.: Nonvolatile static random access memory using magnetic tunnel junctions with current-induced magnetization switching architecture. Jpn. J. Appl. Phys.
48(2009), 043001 (2009)
CrossRef
19.
Ohsawa, T., Koike, H., Miura, S., et al.: 1Mb 4T-2MTJ nonvolatile STT-RAM for embedded memories using 32b fine-grained power gating technique with 1.0ns/200ps wake-up/power-off times. In: Symposium VLSI Circuits, pp. 46–47, July 2012
20.
Abe, K., et al.: Novel hybrid DRAM/MRAM design for reducing power of high performance mobile CPU. In: IEDM Technical Dig., pp. 243–246 (2012)
21.
Kawasumi, A., et al.: Circuit techniques in realizing voltage-generator-less STT MRAM suitable for normally-off-type non-volatile L2 cache memory. In: 5th IEEE International Memory Workshop (IMW), pp. 76–79 (2013)
22.
Noguchi, H., et al.: A 250-MHz 256b-I/O 1-Mb STT-MRAM with advanced perpendicular MTJ based dual cell for nonvolatile magnetic caches to reduce active power of processors. In: VLSI Technology Symposium, C108 - C109 (2013)
23.
Tanaka, C., et al.: Normally-off type nonvolatile SRAM with perpendicular STT-MRAM cells and smallest number of transistors. In: International Conference on Solid State Devices and Materials (SSDM), pp. 1092–1093 (2013)
24.
Noguchi, H., et al.: A 3.3ns-Access-Time 71.2uW/MHz 1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and normally-off memory architecture. In: ISSCC (2015)
27.
Ando, K., Ikegawa, S., Abe, K., Fujita, S., Yoda, H.: Normally-off computer: new roles of nonvolatile devices in future computer systems. In: Sustainable Green Computing. IGI Press, ISBN 978-1-4666-1842-8, June, 2012
28.
Takeda, S., et al.: Low-power cache memory with state-of-the-art STT-MRAM for high performance processors. In: ISOCC (2015)
29.
Kitagawa, E., et al.: Sub-30nm p-MTJ with small switching current, large MR, and high thermal stability. In: 12th Joint MMM/Intermag Conference (2013)