Skip to main content
Erschienen in:

29.09.2022

Technology for Producing Aluminum-Matrix Composite Material Reinforced with Multi-Wall Carbon Nanotubes

verfasst von: A. D. Romanov, E. A. Romanova, I. V. Vilkov, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, R. S. Kovylin

Erschienen in: Metallurgist | Ausgabe 5-6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the results of studying the effect of the multi-wall carbon nanotube addition on physical and mechanical properties of aluminum alloy AMg5Mn obtained using the mechanical mixing technology. The analysis of the experimental and reference samples has shown that the use of microquantities of uniformly distributed multi-wall carbon nanotubes (0.1 wt.%) leads to an increase in tensile strength of the composite by at least 15%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites (a review),” Inter. Mater. Reviews, 55, No. 1, 41–64 (2010).CrossRef S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites (a review),” Inter. Mater. Reviews, 55, No. 1, 41–64 (2010).CrossRef
2.
Zurück zum Zitat Y. F. Wu and G. Y. Kim, “Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing,” J. Mater. Process. Technol., 211, 1341 (2011). Y. F. Wu and G. Y. Kim, “Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing,” J. Mater. Process. Technol., 211, 1341 (2011).
3.
Zurück zum Zitat Y. F. Wu, G. Y. Kim, and A. M. Russell, “Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing,” Mater. Sci. Eng., A 538, 164 (2012). Y. F. Wu, G. Y. Kim, and A. M. Russell, “Effects of mechanical alloying on an Al6061–CNT composite fabricated by semi-solid powder processing,” Mater. Sci. Eng., A 538, 164 (2012).
4.
Zurück zum Zitat A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites, Part A 38, 646 (2007). A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites, Part A 38, 646 (2007).
5.
Zurück zum Zitat Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes,” Composites, Part A 43, 2161–2168 (2012). Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes,” Composites, Part A 43, 2161–2168 (2012).
6.
Zurück zum Zitat P. Dominique, G. Raynald, and A. L. D. Robin, “Structural characterization of a mechanically milled carbon nanotube/aluminum mixture,” Composites, Part A 40, 1482 (2009). P. Dominique, G. Raynald, and A. L. D. Robin, “Structural characterization of a mechanically milled carbon nanotube/aluminum mixture,” Composites, Part A 40, 1482 (2009).
7.
Zurück zum Zitat H. J. Choi, J. H. Shin, and D. H. Bae, “The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites,” Composites, Part A 43, 1061–1072 (2012). H. J. Choi, J. H. Shin, and D. H. Bae, “The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites,” Composites, Part A 43, 1061–1072 (2012).
8.
Zurück zum Zitat H. Kwon et al., “Investigation of carbon nanotube reinforced aluminum matrix composite materials,” Composites Sci. and Technol., 70, No. 3, 546–550 (2010).CrossRef H. Kwon et al., “Investigation of carbon nanotube reinforced aluminum matrix composite materials,” Composites Sci. and Technol., 70, No. 3, 546–550 (2010).CrossRef
9.
Zurück zum Zitat J. Wu et al., “Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering,” Mater. & Design, 41, 344–348 (2012).CrossRef J. Wu et al., “Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering,” Mater. & Design, 41, 344–348 (2012).CrossRef
10.
Zurück zum Zitat N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., Composite material based on aluminum with the addition of multi-walled carbon nanotubes: production, structure, properties,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 2 (38), 134–146 (2016); https://doi.org/10.21685/2072-3040-2016-2-11. N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., Composite material based on aluminum with the addition of multi-walled carbon nanotubes: production, structure, properties,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 2 (38), 134–146 (2016); https://​doi.​org/​10.​21685/​2072-3040-2016-2-11.
11.
Zurück zum Zitat N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., “Microstructural features of the composite material “aluminum — multiwalled carbon nanotubes” after spark plasma sintering,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 3 (51), 120–130 (2019); https://doi.org/10.21685/2072-3040-2019-3-8. N. A. Bunakov, D. V. Kozlov, V. N. Golovanov, et al., “Microstructural features of the composite material “aluminum — multiwalled carbon nanotubes” after spark plasma sintering,” Izv. Vuzov, Volga region, Fiz.-Mat. Nauki, No. 3 (51), 120–130 (2019); https://​doi.​org/​10.​21685/​2072-3040-2019-3-8.
12.
Zurück zum Zitat M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mater. Inter., 24, No. 2, 101–108 (2014).CrossRef M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mater. Inter., 24, No. 2, 101–108 (2014).CrossRef
13.
Zurück zum Zitat H. H. Kim, J. S. S. Babu, and C. G. Kang, “Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements,” Mater. Sci. Eng., A 573, 92 (2013). H. H. Kim, J. S. S. Babu, and C. G. Kang, “Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements,” Mater. Sci. Eng., A 573, 92 (2013).
14.
Zurück zum Zitat P. S. Kang, C. J. Jun, G. P. Jong, K. P. Hyoen, H. C. Yong, H. N. Dong, H. K. Dong, Y. J. Hye, B. Chandan, H. H. Chan, and H. L. Young, “SiC formation on carbon nanotube surface for improving wettability with aluminum,” Compos. Sci. Technol., 74, 6 (2013). P. S. Kang, C. J. Jun, G. P. Jong, K. P. Hyoen, H. C. Yong, H. N. Dong, H. K. Dong, Y. J. Hye, B. Chandan, H. H. Chan, and H. L. Young, “SiC formation on carbon nanotube surface for improving wettability with aluminum,” Compos. Sci. Technol., 74, 6 (2013).
15.
Zurück zum Zitat S. I. Oh, J. Y. Lim, Y. C. Kim, J. Yoon, G. H. Kim, J. Lee, Y. M. Sung, and J. H. Han, “Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process,” J. Alloys Compd., 542, 111 (2012).CrossRef S. I. Oh, J. Y. Lim, Y. C. Kim, J. Yoon, G. H. Kim, J. Lee, Y. M. Sung, and J. H. Han, “Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process,” J. Alloys Compd., 542, 111 (2012).CrossRef
16.
Zurück zum Zitat M. E. Turan, F. Aydin, Y. Sun, H. Zengin, and Y. Akinay, “Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting,” Tribology Inter., 164, 107201 (2021).CrossRef M. E. Turan, F. Aydin, Y. Sun, H. Zengin, and Y. Akinay, “Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting,” Tribology Inter., 164, 107201 (2021).CrossRef
17.
Zurück zum Zitat M. Muhammad and S. Muhammad, “Carbon nanotube-reinforced aluminum composite produced by induction melting,” J. of Applied Research and Technol., 14, 4, 215–224 (2016).CrossRef M. Muhammad and S. Muhammad, “Carbon nanotube-reinforced aluminum composite produced by induction melting,” J. of Applied Research and Technol., 14, 4, 215–224 (2016).CrossRef
18.
Zurück zum Zitat D. K. Lim, T. Shibayanagi, and A. P. Gerlich, “Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing,” Mater. Sci. Eng., A 507, 194–199 (2009). D. K. Lim, T. Shibayanagi, and A. P. Gerlich, “Synthesis of multi-walled CNT reinforced aluminum alloy composite via friction stir processing,” Mater. Sci. Eng., A 507, 194–199 (2009).
19.
Zurück zum Zitat Q. Liu, L. M. Ke, F. C. Liu, C. P. Huang, and L. Xing, “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing,” Mater. Des., 45, 343 (2013).CrossRef Q. Liu, L. M. Ke, F. C. Liu, C. P. Huang, and L. Xing, “Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing,” Mater. Des., 45, 343 (2013).CrossRef
20.
Zurück zum Zitat V. Chak, H. Chattopadhyay, and T. L. Dora, “A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites,” J. of Manufacturing Processes, 56, Part A, 1059–1074 (2020). V. Chak, H. Chattopadhyay, and T. L. Dora, “A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites,” J. of Manufacturing Processes, 56, Part A, 1059–1074 (2020).
21.
Zurück zum Zitat M. Sohail et al., Carbon Nanotube-Reinforced Aluminum Matrix Composites, Advanced Eng. Mater. (2020). M. Sohail et al., Carbon Nanotube-Reinforced Aluminum Matrix Composites, Advanced Eng. Mater. (2020).
23.
Zurück zum Zitat W. Zhou et al., “Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites,” Carbon, 96, 919–928 (2016).CrossRef W. Zhou et al., “Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites,” Carbon, 96, 919–928 (2016).CrossRef
24.
Zurück zum Zitat K. V. Kremlev, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, “Gas-phase synthesis of a new functional hybrid material based on multi-walled carbon nanotubes, decorated with faceted aluminum nanocrystals,” Pis’ma v ZhTF, 44 (19), 24–31 (2018). K. V. Kremlev, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, “Gas-phase synthesis of a new functional hybrid material based on multi-walled carbon nanotubes, decorated with faceted aluminum nanocrystals,” Pis’ma v ZhTF, 44 (19), 24–31 (2018).
27.
Zurück zum Zitat M. Estili and A. Kawasaki, “Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements,” Adv. Mater., 22 (5), 607–610 (2010).CrossRef M. Estili and A. Kawasaki, “Engineering strong intergraphene shear resistance in multi-walled carbon nanotubes and dramatic tensile improvements,” Adv. Mater., 22 (5), 607–610 (2010).CrossRef
28.
Zurück zum Zitat M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mat. Int., 24, No. 2, 101–108 (2014).CrossRef M. Rashad et al., “Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method,” Progress in Natural Sci.: Mat. Int., 24, No. 2, 101–108 (2014).CrossRef
29.
Zurück zum Zitat A. V. Aborkin, A. V. Sobol’kov, K. S. Khor’kov, et al., “Effect of the thermomechanical treatment conditions on the consolidation, the structure, and the mechanical properties of bulk Al–Mg–C Nanocomposites,” Russian Metallurgy (Metally), 2018, No. 7, 625–632 (2018); https://doi.org/10.1134/S0036029518070029.CrossRef A. V. Aborkin, A. V. Sobol’kov, K. S. Khor’kov, et al., “Effect of the thermomechanical treatment conditions on the consolidation, the structure, and the mechanical properties of bulk Al–Mg–C Nanocomposites,” Russian Metallurgy (Metally), 2018, No. 7, 625–632 (2018); https://​doi.​org/​10.​1134/​S003602951807002​9.CrossRef
30.
Zurück zum Zitat A. V. Aborkin, A. I. Zalesnov, I. O. Scriabin, et al., “Structural-phase composition and microhardness of powder composites based on AMg2 and AMg10 alloys hardened by by micro-addition of hybrid structures Al/MWCNT,” Aktual’nye Voprosy Mashinovedeniya, 7, 297–299 (2018). A. V. Aborkin, A. I. Zalesnov, I. O. Scriabin, et al., “Structural-phase composition and microhardness of powder composites based on AMg2 and AMg10 alloys hardened by by micro-addition of hybrid structures Al/MWCNT,” Aktual’nye Voprosy Mashinovedeniya, 7, 297–299 (2018).
31.
Zurück zum Zitat D. Sivkov, S. Nekipelov, O. Petrova, A. Vinogradov, A. Mingaleva, S. Isaenko, P. Makarov, A. Ob’edkov, B. Kaverin, S. Gusev, I. Vilkov, A. Aborkin, and V. Sivkov, “Studies of buried layers and interfaces of tungsten carbide coatings on the MWCNT surface by XPS and NEXAFS spectroscopy,” Applied Sci. (Switzerland), 10 (14) (2020); https://doi.org/10.3390/app10144736. D. Sivkov, S. Nekipelov, O. Petrova, A. Vinogradov, A. Mingaleva, S. Isaenko, P. Makarov, A. Ob’edkov, B. Kaverin, S. Gusev, I. Vilkov, A. Aborkin, and V. Sivkov, “Studies of buried layers and interfaces of tungsten carbide coatings on the MWCNT surface by XPS and NEXAFS spectroscopy,” Applied Sci. (Switzerland), 10 (14) (2020); https://​doi.​org/​10.​3390/​app10144736.
33.
Zurück zum Zitat A. D. Romanov, E. A. Romanova, and E. A. Chernyshov, “Study of the specifics of liquid-phase oxidation of aluminum melt to obtain an aluminum-matrix composite,” Metallurg, No. 7, 75–80 (2021). A. D. Romanov, E. A. Romanova, and E. A. Chernyshov, “Study of the specifics of liquid-phase oxidation of aluminum melt to obtain an aluminum-matrix composite,” Metallurg, No. 7, 75–80 (2021).
34.
Zurück zum Zitat Ye. A. Chernyshov, A. D. Romanov, B. S. Kaverin, et al., “Development of the technology for producing a composite based on aluminum reinforced with hollow ceramic microspheres,” Metallurg, No. 12, 50–53 (2018). Ye. A. Chernyshov, A. D. Romanov, B. S. Kaverin, et al., “Development of the technology for producing a composite based on aluminum reinforced with hollow ceramic microspheres,” Metallurg, No. 12, 50–53 (2018).
Metadaten
Titel
Technology for Producing Aluminum-Matrix Composite Material Reinforced with Multi-Wall Carbon Nanotubes
verfasst von
A. D. Romanov
E. A. Romanova
I. V. Vilkov
A. M. Ob’edkov
N. M. Semenov
B. S. Kaverin
R. S. Kovylin
Publikationsdatum
29.09.2022
Verlag
Springer US
Erschienen in
Metallurgist / Ausgabe 5-6/2022
Print ISSN: 0026-0894
Elektronische ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-022-01376-1

Weitere Artikel der Ausgabe 5-6/2022

Metallurgist 5-6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.