Skip to main content

2013 | OriginalPaper | Buchkapitel

5. Temperature Compensation

verfasst von : Fabio Sebastiano, Lucien J. Breems, Kofi A. A. Makinwa

Erschienen in: Mobility-based Time References for Wireless Sensor Networks

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Chap. 4, it has been shown that after a single-point trim at room temperature the output frequency of mobility-based oscillators is characterized by a strong temperature dependence, which is larger then ± 30% over the commercial temperature range from − 40 to + 85 ∘ C. However, if an ideal temperature compensation is applied, their inaccuracy is in the order of 1% over the same temperature range. As has been shown in Chap. 2, such inaccuracy is low enough for a large variety of applications, including Wireless Sensor Network (WSN) nodes. This chapter discusses how to keep such level of inaccuracy when going from an ideal to a practical temperature compensation scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In package datasheets the junction-to-ambient thermal resistance is also often reported, which for the simple model presented is equal to \({R}_{ja} = {R}_{jc} + {R}_{ja}\).
 
2
Throughout this chapter, the terms batch-calibration or correction (curvature correction, non-linear correction) refer to the procedure of estimating the average error of a production batch from the measurements of a limited number of samples from that batch, and by adjusting all individual samples in the same manner and by the same amount based on that estimate.
 
3
With reference to the symbols used in Sect. 5.6.4, for α = 18, the bs = 1 phase is the same as in the case α = 2, while the length in the bs = 0 phase has been assumed equal to \({T}_{1} + (\alpha - 1){T}_{2} = 50\,\mu \textrm{ s} + 17 \cdot 20\,\mu \textrm{ s} = 390\,\mu \textrm{ s}\).
 
4
A third or fourth-order polynomial would be sufficient to compensate for the third-order non-linearity of V be , which is usually the main residual non-linearity. A sixth-order polynomial is employed in this work to compensate the strong non-linearity at high temperature due to leakage.
 
5
Note that the order of the polynomials P 7( ⋅) and Q 4( ⋅) is the minimum required for the error due to the non-linearity of the compensation to be negligible compared to the spread among the samples.
 
6
The up-date rate of N { div} depends on the temperature variations rate in the chosen application.
 
7
Note that a faster sampling rate is adopted for the temperature sensor with respect to that (2.2 Sa/s) employed for the measurements presented in Sect. 5.7. Though this could result in a larger temperature error, it is allowed because, as shown earlier in this section, the full accuracy of the temperature sensor is not required for the reference’s compensation.
 
8
The time constant of the exponential settling is in this case τ2 = 180 s due to the lack of induced air flow on the sample and the consequent increase in thermal resistance R pkg .
 
Literatur
3.
Zurück zum Zitat Sofia J (1995) Analysis of thermal transient data with synthesized dynamic models for semiconductor devices. IEEE Trans Comp Packag Manuf Technol A 18(1):39–47. DOI 10.1109/95.370733CrossRef Sofia J (1995) Analysis of thermal transient data with synthesized dynamic models for semiconductor devices. IEEE Trans Comp Packag Manuf Technol A 18(1):39–47. DOI 10.1109/95.370733CrossRef
4.
Zurück zum Zitat Pertijs M, Makinwa K, Huijsing J (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1  ∘ C from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 40(12):2805–2815. DOI 10.1109/JSSC.2005.858476 Pertijs M, Makinwa K, Huijsing J (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1  ∘ C from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 40(12):2805–2815. DOI 10.1109/JSSC.2005.858476
5.
Zurück zum Zitat Aita A, Pertijs M, Makinwa K, Huijsing J (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0.25 ∘ C (3σ) from − 70 ∘ C to 130 ∘ C. In: ISSCC Dig. Tech. Papers, pp 342–343, 343a. DOI 10.1109/ISSCC.2009.4977448 Aita A, Pertijs M, Makinwa K, Huijsing J (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ± 0.25 ∘ C (3σ) from − 70 ∘ C to 130 ∘ C. In: ISSCC Dig. Tech. Papers, pp 342–343, 343a. DOI 10.1109/ISSCC.2009.4977448
6.
Zurück zum Zitat Duarte D, Geannopoulos G, Mughal U, Wong K, Taylor G (2007) Temperature sensor design in a high volume manufacturing 65nm CMOS digital process. In: Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp 221–224. DOI 10.1109/CICC. 2007.4405718 Duarte D, Geannopoulos G, Mughal U, Wong K, Taylor G (2007) Temperature sensor design in a high volume manufacturing 65nm CMOS digital process. In: Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp 221–224. DOI 10.1109/CICC. 2007.4405718
7.
Zurück zum Zitat Lakdawala H, Li Y, Raychowdhury A, Taylor G, Soumyanath K (2009) A 1.05 V 1.6 mW 0.45  ∘ C 3σ-resolution ΣΔ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS. IEEE J Solid State Circ (12):3621–3630 Lakdawala H, Li Y, Raychowdhury A, Taylor G, Soumyanath K (2009) A 1.05 V 1.6 mW 0.45  ∘ C 3σ-resolution ΣΔ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS. IEEE J Solid State Circ (12):3621–3630
8.
Zurück zum Zitat Floyd MS, Ghiasi S, Keller TW, Rajamani K, Rawson FL, Rudbio JC, Ware MS (2007) System power management support in the IBM POWER6 microprocessor. IBM J Res Develop 51(6):733–746CrossRef Floyd MS, Ghiasi S, Keller TW, Rajamani K, Rawson FL, Rudbio JC, Ware MS (2007) System power management support in the IBM POWER6 microprocessor. IBM J Res Develop 51(6):733–746CrossRef
9.
Zurück zum Zitat Saneyoshi E, Nose K, Kajita M, Mizuno M (2008) A 1.1V 35 μm × 35 μm thermal sensor with supply voltage sensitivity of 2 ∘ C/10% -supply for thermal management on the SX-9 supercomputer. In: IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp 152–153. DOI 10.1109/VLSIC.2008.4585987 Saneyoshi E, Nose K, Kajita M, Mizuno M (2008) A 1.1V 35 μm × 35 μm thermal sensor with supply voltage sensitivity of 2 ∘ C/10% -supply for thermal management on the SX-9 supercomputer. In: IEEE Symposium on VLSI Circuits Dig. Tech. Papers, pp 152–153. DOI 10.1109/VLSIC.2008.4585987
10.
Zurück zum Zitat Chen P, Chen CC, Peng YH, Wang KM, Wang YS (2010) A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of − 0.4 ∘ C ˜ +0.6 ∘ C over a 0 ∘ C to 90 ∘ C range. IEEE J Solid State Circ 45(3):600–609. DOI 10.1109/JSSC.2010.2040658 Chen P, Chen CC, Peng YH, Wang KM, Wang YS (2010) A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of − 0.4 ∘ C ˜ +0.6 ∘ C over a 0 ∘ C to 90 ∘ C range. IEEE J Solid State Circ 45(3):600–609. DOI 10.1109/JSSC.2010.2040658
11.
Zurück zum Zitat Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht
12.
Zurück zum Zitat Souri K, Kashmiri M, Makinwa K (2009) A CMOS temperature sensor with an energy-efficient Zoom ADC and an inaccuracy of ± 0.25 ∘ C (3σ) from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. Tech. Papers, pp 310–311, 311a. DOI 10.1109/ISSCC.2009.4977448 Souri K, Kashmiri M, Makinwa K (2009) A CMOS temperature sensor with an energy-efficient Zoom ADC and an inaccuracy of ± 0.25 ∘ C (3σ) from − 40 ∘ C to 125 ∘ C. In: ISSCC Dig. Tech. Papers, pp 310–311, 311a. DOI 10.1109/ISSCC.2009.4977448
13.
Zurück zum Zitat Krummenacher P, Oguey H (1989) Smart temperature sensor in CMOS technology. Sensor Actuator A Phys 22(1–3):636–638. DOI 10.1016/0924-4247(89)80048-2CrossRef Krummenacher P, Oguey H (1989) Smart temperature sensor in CMOS technology. Sensor Actuator A Phys 22(1–3):636–638. DOI 10.1016/0924-4247(89)80048-2CrossRef
14.
Zurück zum Zitat Kim JP, Yang W, Tan HY (2003) A low-power 256-Mb SDRAM with an on-chip thermometer and biased reference line sensing scheme. IEEE J Solid State Circ 38(2):329–337. DOI 10.1109/JSSC.2002.807170CrossRef Kim JP, Yang W, Tan HY (2003) A low-power 256-Mb SDRAM with an on-chip thermometer and biased reference line sensing scheme. IEEE J Solid State Circ 38(2):329–337. DOI 10.1109/JSSC.2002.807170CrossRef
15.
Zurück zum Zitat Szajda K, Sodini C, Bowman H (1996) A low noise, high resolution silicon temperature sensor. IEEE J Solid State Circ 31(9):1308–1313. DOI 10.1109/4.535415CrossRef Szajda K, Sodini C, Bowman H (1996) A low noise, high resolution silicon temperature sensor. IEEE J Solid State Circ 31(9):1308–1313. DOI 10.1109/4.535415CrossRef
16.
Zurück zum Zitat Creemer J, Fruett F, Meijer G, French P (2001) The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sensor J 1(2):98–108. DOI 10.1109/JSEN.2001.936927CrossRef Creemer J, Fruett F, Meijer G, French P (2001) The piezojunction effect in silicon sensors and circuits and its relation to piezoresistance. IEEE Sensor J 1(2):98–108. DOI 10.1109/JSEN.2001.936927CrossRef
17.
Zurück zum Zitat Meijer G, Gelder RV, Nooder V, Drecht JV, Kerkvliet H (1989) A three-terminal intergrated temperature transducer with microcomputer interfacing. Sensor Actuator 18(2):195–206. DOI 10.1016/0250-6874(89)87018-0CrossRef Meijer G, Gelder RV, Nooder V, Drecht JV, Kerkvliet H (1989) A three-terminal intergrated temperature transducer with microcomputer interfacing. Sensor Actuator 18(2):195–206. DOI 10.1016/0250-6874(89)87018-0CrossRef
18.
Zurück zum Zitat Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520 Kashmiri SM, Pertijs MAP, Makinwa KAA (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0. 1% from − 55 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2510–2520
19.
Zurück zum Zitat Norsworthy S, Schreier R, Temes G (eds) (1996) Delta-sigma data converters: theory, design, and simulation. Wiley, Hoboken Norsworthy S, Schreier R, Temes G (eds) (1996) Delta-sigma data converters: theory, design, and simulation. Wiley, Hoboken
20.
Zurück zum Zitat Meijer G, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensor J 1(3):225–234. DOI 10.1109/JSEN. 2001.954835CrossRef Meijer G, Wang G, Fruett F (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sensor J 1(3):225–234. DOI 10.1109/JSEN. 2001.954835CrossRef
21.
Zurück zum Zitat Meijer GC (1986) Thermal sensors based on transistors. Sensors Actuators 10(1–2):103–125. DOI 10.1016/0250-6874(86)80037-3 Meijer GC (1986) Thermal sensors based on transistors. Sensors Actuators 10(1–2):103–125. DOI 10.1016/0250-6874(86)80037-3
22.
Zurück zum Zitat Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2010a) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 ∘ C (3σ) from − 70 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2591–2601 Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2010a) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 ∘ C (3σ) from − 70 ∘ C to 125 ∘ C. IEEE J Solid State Circ 45(12):2591–2601
23.
Zurück zum Zitat Aita A, Makinwa K (2007) Low-power operation of a precision CMOS temperature sensor based on substrate PNPs. In: IEEE Sensors, pp 856–859. DOI 10.1109/ ICSENS.2007.4388536 Aita A, Makinwa K (2007) Low-power operation of a precision CMOS temperature sensor based on substrate PNPs. In: IEEE Sensors, pp 856–859. DOI 10.1109/ ICSENS.2007.4388536
24.
Zurück zum Zitat You F, Embabi H, Duque-Carrillo J, Sanchez-Sinencio E (1997) An improved tail current source for low voltage applications. IEEE J Solid State Circ 32(8):1173–1180. DOI 10.1109/4.604073CrossRef You F, Embabi H, Duque-Carrillo J, Sanchez-Sinencio E (1997) An improved tail current source for low voltage applications. IEEE J Solid State Circ 32(8):1173–1180. DOI 10.1109/4.604073CrossRef
25.
Zurück zum Zitat Baker RJ, Li HW, Boyce DE (1997) CMOS circuit design, layout, and simulations. IEEE, New York, p 637 Baker RJ, Li HW, Boyce DE (1997) CMOS circuit design, layout, and simulations. IEEE, New York, p 637
26.
Zurück zum Zitat Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modeling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729. DOI 10.1109/TED.2007.904483CrossRef Pouydebasque A, Charbuillet C, Gwoziecki R, Skotnicki T (2007) Refinement of the subthreshold slope modeling for advanced bulk CMOS devices. IEEE Trans Electron Dev 54(10):2723–2729. DOI 10.1109/TED.2007.904483CrossRef
27.
Zurück zum Zitat Enz C, Temes G (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614CrossRef Enz C, Temes G (1996) Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE 84(11):1584–1614CrossRef
28.
Zurück zum Zitat Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2011) A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid State Circ, 46(7):1544–1552CrossRef Sebastiano F, Breems L, Makinwa K, Drago S, Leenaerts D, Nauta B (2011) A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J Solid State Circ, 46(7):1544–1552CrossRef
29.
Zurück zum Zitat De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914CrossRef De Smedt V, De Wit P, Vereecken W, Steyaert M (2009) A 66 μW 86 ppm/ ∘ C fully-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid State Circ 44(7):1990–2001. DOI 10.1109/JSSC.2009.2021914CrossRef
30.
Zurück zum Zitat Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227 Lee J, Cho S (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: 2009 Symposium on VLSI Circuits Dig. Tech. Papers, pp 226–227
31.
Zurück zum Zitat Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227 Ueno K, Asai T, Amemiya Y (2009) A 10MHz 80μW 67 ppm/ ∘ C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS. In: Proc. ESSCIRC, pp 226–227
Metadaten
Titel
Temperature Compensation
verfasst von
Fabio Sebastiano
Lucien J. Breems
Kofi A. A. Makinwa
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3483-2_5

Neuer Inhalt