Skip to main content
Erschienen in: Physics of Metals and Metallography 5/2020

01.05.2020 | ELECTRICAL AND MAGNETIC PROPERTIES

Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy

verfasst von: A. A. Moiseev, D. A. Bukreev, M. S. Derevyanko, V. O. Kudryavtsev, A. Larrãnaga, G. V. Kurlyandskaya, A. V. Semirov

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Peculiarities of the structure, magnetic properties, and temperature dependence of magnetoimpedance effect of a Fe20Co6Ni74/Cu98Be2 composite wire with the induced axial magnetic anisotropy are studied in this work. The increase in the temperature in a range from 150 to 450 K is shown to lead to an increase in the magnetoimpedance effect. To explain the experimental results, a model is proposed, which takes temperature variations of the magnetization and magnetic anisotropy constant of the Fe20Co6Ni74 magnetic layer into account.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960; Nauka, Moscow, 1982). L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960; Nauka, Moscow, 1982).
2.
Zurück zum Zitat A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997). A. S. Antonov, S. N. Gadetskii, A. B. Granovskii, A. L. D’yachkov, V. P. Paramonov, N. S. Perov, A. F. Prokoshin, N. A. Usov, and A. N. Lagar’kov, “Giant magnetoimpedance in amorphous and nanocrystalline multilayers,” Phys. Met. Metallogr. 83, 612–618 (1997).
3.
Zurück zum Zitat L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef L. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl. Phys. Lett. 65, 1189–1191 (1994).CrossRef
4.
Zurück zum Zitat R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef R. S. Beach and A. E. Berkowitz, “Giant magnetic field dependent impedance of amorphous FeCoSiB wire,” Appl. Phys. Lett. 64, 3652–3654 (1994).CrossRef
5.
Zurück zum Zitat M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter. 7, 115–120 (1995). M. Knobel, M. L. Sanchez, J. Velazquez, and M. Vazquez, “Stress dependence of the giant magneto-impedance effect in amorphous wires,” J. Phys.: Condens. Matter. 7, 115–120 (1995).
6.
Zurück zum Zitat H. Chiriac, C. Sandrino Marinescu, and T.-A. Óvári, “Temperature dependence of the magneto-impedance effect in Co-rich amorphous glass-covered wires,” J. Magn. Magn. Mater. 215–216, 539–541 (2000).CrossRef H. Chiriac, C. Sandrino Marinescu, and T.-A. Óvári, “Temperature dependence of the magneto-impedance effect in Co-rich amorphous glass-covered wires,” J. Magn. Magn. Mater. 215–216, 539–541 (2000).CrossRef
7.
Zurück zum Zitat A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, S. O. Volchkov, and G. V. Kurlyandskaya, “Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons,” Tech. Phys. 56, 395–399 (2011).CrossRef
8.
Zurück zum Zitat A. V. Semirov, M. S. Derevyanko, D. A. Bukreev, A. A. Moiseev, and G. V. Kurlyandskaya, “Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the Curie point,” Tech. Phys. 58, 774–777 (2013).CrossRef A. V. Semirov, M. S. Derevyanko, D. A. Bukreev, A. A. Moiseev, and G. V. Kurlyandskaya, “Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the Curie point,” Tech. Phys. 58, 774–777 (2013).CrossRef
9.
Zurück zum Zitat D. A. Bukreev, A. A. Moiseev, M. S. Derevyanko, and A. V. Semirov, “High-frequency electric properties of amorphous soft magnetic cobalt-based alloys in the region of transition to the paramagnetic state,” Russ. Phys. J. 58, 141–145 (2015).CrossRef D. A. Bukreev, A. A. Moiseev, M. S. Derevyanko, and A. V. Semirov, “High-frequency electric properties of amorphous soft magnetic cobalt-based alloys in the region of transition to the paramagnetic state,” Russ. Phys. J. 58, 141–145 (2015).CrossRef
10.
Zurück zum Zitat S. O. Volchkov, M. A. Cerdeira, V. V. Gubernatorov, E. I. Duhan, A. P. Potapov, and V. A. Lukshina, “Effects of slight plastic deformation on magnetic properties and giant magnetoimpedance of FeCoCrSiB amorphous ribbons,” Chin. Phys. Lett. 24, 1357–1360 (2007).CrossRef S. O. Volchkov, M. A. Cerdeira, V. V. Gubernatorov, E. I. Duhan, A. P. Potapov, and V. A. Lukshina, “Effects of slight plastic deformation on magnetic properties and giant magnetoimpedance of FeCoCrSiB amorphous ribbons,” Chin. Phys. Lett. 24, 1357–1360 (2007).CrossRef
11.
Zurück zum Zitat E. V. Golubeva, E. A. Stepanova, K. G. Balymov, S. O. Volchkov, and G. V. Kurlyandskaya, “Magnetic properties and the giant magnetoimpedance of amorphous Co-based wires with a carbon coating,” Phys. Met. Metallogr. 119, 324–331 (2018).CrossRef E. V. Golubeva, E. A. Stepanova, K. G. Balymov, S. O. Volchkov, and G. V. Kurlyandskaya, “Magnetic properties and the giant magnetoimpedance of amorphous Co-based wires with a carbon coating,” Phys. Met. Metallogr. 119, 324–331 (2018).CrossRef
12.
Zurück zum Zitat R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef R. L. Sommer and C. L. Chien, “Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys,” Appl. Phys. Lett. 67, 857–859 (1995).CrossRef
13.
Zurück zum Zitat A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2011).CrossRef A. V. Semirov, D. A. Bukreev, A. A. Moiseev, V. A. Lukshina, E. G. Volkova, and S. O. Volchkov, “Influence of the special features of the effective magnetic anisotropy on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 strips,” Russ. Phys. J. 54, 612–618 (2011).CrossRef
14.
Zurück zum Zitat R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef R. S. Beach, N. Smith, C. L. Platt, F. Jeffers, and A. E. Berkowitz, “Magneto-impedance effect in NiFe plated wire,” Appl. Phys. Lett. 68, 2753–2755 (1996).CrossRef
15.
Zurück zum Zitat A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).CrossRef A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov, and A. M. Yakunin, “Nonlinear magnetization reversal in copper-permalloy composite wires induced by a high-frequency current,” Tech. Phys. Lett. 27, 313–315 (2001).CrossRef
16.
Zurück zum Zitat G. Kurlyandskaya, H. García-Miquel, M. Vázquez, A. Svalov, and V. Vas’kovskiy, “Longitudinal magnetic bistability of electroplated wires,” J. Magn. Magn. Mater. 249, 34–38 (2002).CrossRef G. Kurlyandskaya, H. García-Miquel, M. Vázquez, A. Svalov, and V. Vas’kovskiy, “Longitudinal magnetic bistability of electroplated wires,” J. Magn. Magn. Mater. 249, 34–38 (2002).CrossRef
17.
Zurück zum Zitat G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larranaga, “Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 4, 7604104. (2017).CrossRef G. V. Kurlyandskaya, R. El Kammouni, S. O. Volchkov, S. V. Shcherbinin, and A. Larranaga, “Magnetoimpedance sensitive elements based on CuBe/FeCoNi electroplated wires in single and double wire configurations,” IEEE Trans. Magn. 53, 4, 7604104. (2017).CrossRef
18.
Zurück zum Zitat D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, “Magneto-impedance effect of composite wires prepared by chemical plating under DC current,” Nano-Micro Lett. 6, 227–232 (2014).CrossRef D. L. Chen, X. Li, H. L. Pan, H. Y. Luan, and Z. J. Zhao, “Magneto-impedance effect of composite wires prepared by chemical plating under DC current,” Nano-Micro Lett. 6, 227–232 (2014).CrossRef
19.
Zurück zum Zitat A. C. Mishra, “Microstructure, magnetic and magnetoimpedance properties in electrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in plating bath,” Phys. B 407, 923–934 (2012).CrossRef A. C. Mishra, “Microstructure, magnetic and magnetoimpedance properties in electrodeposited NiFe/Cu and CoNiFe/Cu wire with thiourea additive in plating bath,” Phys. B 407, 923–934 (2012).CrossRef
20.
Zurück zum Zitat D. García, G. V. Kurlyandskaya, M. Vázquez, F. I. Toth, and L. K. Varga, “Influence of field annealing on the hysteretic behaviour of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells,” J. Magn. Magn. Mater. 203, 208–210 (1999).CrossRef D. García, G. V. Kurlyandskaya, M. Vázquez, F. I. Toth, and L. K. Varga, “Influence of field annealing on the hysteretic behaviour of the giant magneto-impedance effect of Cu wires covered with Ni80Fe20 outer shells,” J. Magn. Magn. Mater. 203, 208–210 (1999).CrossRef
21.
Zurück zum Zitat G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef G. V. Kurlyandskaya, N. G. Bebenin, and V. O. Vas’kovskii, “Giant magnetic impedance of wires with a thin magnetic coating,” Phys. Met. Metallogr. 111, 133–154 (2011).CrossRef
22.
Zurück zum Zitat A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko,“ Automated measuring complex for magnetic impedance spectroscopy of soft magnetic materials,” Nauch. Pribostr. 20, 42–45 (2010). A. V. Semirov, A. A. Moiseev, D. A. Bukreev, V. O. Kudryavtsev, A. A. Gavrilyuk, G. V. Zakharov, and M. S. Derevyanko,“ Automated measuring complex for magnetic impedance spectroscopy of soft magnetic materials,” Nauch. Pribostr. 20, 42–45 (2010).
23.
Zurück zum Zitat L. Kraus, “GMI modeling and material optimization,” Sens. Actuators, A 106, 187–194 (2003).CrossRef L. Kraus, “GMI modeling and material optimization,” Sens. Actuators, A 106, 187–194 (2003).CrossRef
24.
Zurück zum Zitat E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc., A 240, 599–642 (1948). E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philos. Trans. R. Soc., A 240, 599–642 (1948).
25.
Zurück zum Zitat F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Phys. 61, 206–219 (1930). F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Phys. 61, 206–219 (1930).
26.
Zurück zum Zitat A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian]. A. G. Lesnik, Induced Magnetic Anisotropy (Naukova Dumka, Kiev, 1976) [in Russian].
Metadaten
Titel
Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy
verfasst von
A. A. Moiseev
D. A. Bukreev
M. S. Derevyanko
V. O. Kudryavtsev
A. Larrãnaga
G. V. Kurlyandskaya
A. V. Semirov
Publikationsdatum
01.05.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20050087

Weitere Artikel der Ausgabe 5/2020

Physics of Metals and Metallography 5/2020 Zur Ausgabe