Skip to main content
Erschienen in:

06.07.2024 | Original Paper

Temperature distribution analysis of gap type conductors and carbon fiber composite core conductors based on finite element

verfasst von: Feng Yang, Xiangkun Wang, Lei Xia, Chongyang Feng, Yao Wang

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to investigate the internal temperature characteristics during the operation of gap-type extra-high-strength steel core heat-resistant aluminum alloy conductors and carbon fiber composite core flexible aluminum conductors, a finite element simulation model based on the thermal balance equation of conductors is constructed, taking the electromagnetic-flow-solid-heat multiphysics field coupling into consideration. The simulation results are in good agreement with the theoretical calculation results of the thermal balance equation. The results indicate that, under identical conditions, the average temperature, radial temperature difference, and maximum temperature of the carbon fiber composite core flexible aluminum conductor with equivalent specifications are all lower than those of the gap-type extra-high-strength steel core heat-resistant aluminum alloy conductor. Furthermore, due to the significantly smaller radial temperature difference of the air gap-type extra-high-strength steel core heat-resistant aluminum alloy conductor and the carbon fiber composite core flexible aluminum conductor compared to conventional steel core aluminum stranded conductors under the same conditions, the maximum temperatures of the gap-type extra-high-strength steel core heat-resistant aluminum alloy conductor and the carbon fiber composite core conductor are approximately 4% and 8% lower, respectively, under natural convection, and approximately 8% and 14% lower, respectively, under forced convection, compared to conventional steel core aluminum stranded conductors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Liao Y, Hu Y, Li R, Wang L, Yin F (2021) Dynamic performance of carbon fiber conductors in medium-heavy ice areas. High Volt Eng 47(100):69–72MATH Liao Y, Hu Y, Li R, Wang L, Yin F (2021) Dynamic performance of carbon fiber conductors in medium-heavy ice areas. High Volt Eng 47(100):69–72MATH
2.
Zurück zum Zitat Wang Y, Zhang Y, Wang Z et al (2020) Multi-parameter correction algorithm for transmission line loss. J Electr Power Sci Technol 35(5):126–131CrossRefMATH Wang Y, Zhang Y, Wang Z et al (2020) Multi-parameter correction algorithm for transmission line loss. J Electr Power Sci Technol 35(5):126–131CrossRefMATH
3.
Zurück zum Zitat Li X, Liu P, Cai W et al (2019) Protective performance evaluation system for double-circuit transmission lines on the same tower. J Electr Power Sci Technol 34(1):59–66MATH Li X, Liu P, Cai W et al (2019) Protective performance evaluation system for double-circuit transmission lines on the same tower. J Electr Power Sci Technol 34(1):59–66MATH
4.
Zurück zum Zitat Wang L (2018) research on the application of new special conductors in power transmission lines. Master’s thesis, Xi’an University of Technology Wang L (2018) research on the application of new special conductors in power transmission lines. Master’s thesis, Xi’an University of Technology
5.
Zurück zum Zitat Zhao L, Wang R, Dai P et al (2023) calculation method for conductor sag based on radial temperature and creep. Engineering Science and Technology, 1–9. Retrieved 11 July 2023 Zhao L, Wang R, Dai P et al (2023) calculation method for conductor sag based on radial temperature and creep. Engineering Science and Technology, 1–9. Retrieved 11 July 2023
6.
Zurück zum Zitat Huang X, Sun Q, Zhang G et al (2008) Theoretical calculation and application research on real-time capacity increase technology for power transmission lines. High Volt Eng 34(6):1138–1144MATH Huang X, Sun Q, Zhang G et al (2008) Theoretical calculation and application research on real-time capacity increase technology for power transmission lines. High Volt Eng 34(6):1138–1144MATH
7.
Zurück zum Zitat Liu Y, Luo J (2005) Mathematical method for real-time calculation of cable conductor temperature. High Volt Eng 05:52–54MATH Liu Y, Luo J (2005) Mathematical method for real-time calculation of cable conductor temperature. High Volt Eng 05:52–54MATH
8.
Zurück zum Zitat Chang K, Xu T, Yu C et al (2019) Discussion on risk control strategies for power grid operation under natural disasters. Power Syst Protect Control 47(10):73–81MATH Chang K, Xu T, Yu C et al (2019) Discussion on risk control strategies for power grid operation under natural disasters. Power Syst Protect Control 47(10):73–81MATH
9.
Zurück zum Zitat Xia J, Xia X, Zhao W et al (2019) Research on online monitoring of high voltage cables based on differential current analysis. High Volt Appar 55(7):165–172MATH Xia J, Xia X, Zhao W et al (2019) Research on online monitoring of high voltage cables based on differential current analysis. High Volt Appar 55(7):165–172MATH
10.
Zurück zum Zitat Quan Y, Wang Z, Hao X et al (2009) Fault distance measurement algorithm for overhead transmission lines based on the suspended chain theory. Mod Electr Power 26(01):52–56MATH Quan Y, Wang Z, Hao X et al (2009) Fault distance measurement algorithm for overhead transmission lines based on the suspended chain theory. Mod Electr Power 26(01):52–56MATH
12.
Zurück zum Zitat Morgan VT (1982) The thermal rating of overhead-line conductors Part I. The steady-state thermal model. Electr Power Syst Res 5(2):119–139CrossRefMATH Morgan VT (1982) The thermal rating of overhead-line conductors Part I. The steady-state thermal model. Electr Power Syst Res 5(2):119–139CrossRefMATH
13.
Zurück zum Zitat Zhang H, Han X, Wang Y (2008) Analysis of operating current carrying capacity for overhead transmission lines. Power Syst Technol 14:31–35MATH Zhang H, Han X, Wang Y (2008) Analysis of operating current carrying capacity for overhead transmission lines. Power Syst Technol 14:31–35MATH
14.
Zurück zum Zitat Lindberg E (2011) The overhead line sag dependence on weather parameters and line current Lindberg E (2011) The overhead line sag dependence on weather parameters and line current
15.
Zurück zum Zitat IEEE Std 738-2006. IEEE standard for calculating the current-temperature of bare overhead conductors IEEE Std 738-2006. IEEE standard for calculating the current-temperature of bare overhead conductors
16.
Zurück zum Zitat Hall JF, Deb AK, Savoullis J (1988) Wind tunnel studies of transmission line conductor temperatures. IEEE Trans Power Deliv 3(2):801–812CrossRefMATH Hall JF, Deb AK, Savoullis J (1988) Wind tunnel studies of transmission line conductor temperatures. IEEE Trans Power Deliv 3(2):801–812CrossRefMATH
17.
Zurück zum Zitat Black WZ, Collins SS, Hall JF (1988) Theoretical model for temperature gradients within bare overhead conductors. IEEE Trans Power Deliv 3(2):707–715CrossRef Black WZ, Collins SS, Hall JF (1988) Theoretical model for temperature gradients within bare overhead conductors. IEEE Trans Power Deliv 3(2):707–715CrossRef
18.
Zurück zum Zitat Liu Y, Yu J, Cheng P (2015) Analysis and calculation of current carrying capacity for overhead transmission lines based on electromagnetic-thermal coupling field. Power Syst Protect Control 43(9):28–34MATH Liu Y, Yu J, Cheng P (2015) Analysis and calculation of current carrying capacity for overhead transmission lines based on electromagnetic-thermal coupling field. Power Syst Protect Control 43(9):28–34MATH
19.
Zurück zum Zitat Lü A, Li Y, Li J, Zhang X, Wu F (2014) Finite element analysis method for the temperature relationship between optical fiber and conductor in photoelectric composite submarine cables. Trans China Electrotech Soc 4:91–96MATH Lü A, Li Y, Li J, Zhang X, Wu F (2014) Finite element analysis method for the temperature relationship between optical fiber and conductor in photoelectric composite submarine cables. Trans China Electrotech Soc 4:91–96MATH
20.
Zurück zum Zitat Wei J, Zhao W, Li M et al (2021) Finite element-based analysis of heating in low wind pressure conductors. Power Syst Protect Control 49(19):56–64MATH Wei J, Zhao W, Li M et al (2021) Finite element-based analysis of heating in low wind pressure conductors. Power Syst Protect Control 49(19):56–64MATH
21.
Zurück zum Zitat IEEE Power Engineering Society (2013) IEEE standard for calculating the current temperature relationship of bare overhead conductors. The Institute of Electrical and Electronics Engineers Inc, New York IEEE Power Engineering Society (2013) IEEE standard for calculating the current temperature relationship of bare overhead conductors. The Institute of Electrical and Electronics Engineers Inc, New York
22.
Zurück zum Zitat Ding L (2019) Thermal stress and vibration fatigue life of overhead transmission line. North China Electric Power UniversityMATH Ding L (2019) Thermal stress and vibration fatigue life of overhead transmission line. North China Electric Power UniversityMATH
23.
Zurück zum Zitat Zhang Y (2018) Analysis of the breeze vibration fatigue life of overhead conductor considering temperature stress. Zhengzhou University Zhang Y (2018) Analysis of the breeze vibration fatigue life of overhead conductor considering temperature stress. Zhengzhou University
24.
Zurück zum Zitat Cardoso RJ, Salles C et al (2020) Iterative formulation for the skin effect on cylindrical conductors based on Feynman’s approach. Int J Numer Model 33(1):1–11CrossRefMATH Cardoso RJ, Salles C et al (2020) Iterative formulation for the skin effect on cylindrical conductors based on Feynman’s approach. Int J Numer Model 33(1):1–11CrossRefMATH
25.
Zurück zum Zitat Lan L, Qiu C, Du X et al (2020) Analysis of power frequency parameters for high-temperature superconducting cables in distribution networks. Power Syst Protect Control 48(18):95–101MATH Lan L, Qiu C, Du X et al (2020) Analysis of power frequency parameters for high-temperature superconducting cables in distribution networks. Power Syst Protect Control 48(18):95–101MATH
Metadaten
Titel
Temperature distribution analysis of gap type conductors and carbon fiber composite core conductors based on finite element
verfasst von
Feng Yang
Xiangkun Wang
Lei Xia
Chongyang Feng
Yao Wang
Publikationsdatum
06.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02588-1