Skip to main content
Erschienen in: Colloid and Polymer Science 12/2016

06.10.2016 | Original Contribution

Temperature-driven volume phase transition of a single stimuli-responsive microgel particle using optical tweezers

verfasst von: Deepak K. Gupta, D. Karthickeyan, B. V. R. Tata, T. R. Ravindran

Erschienen in: Colloid and Polymer Science | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(N-isopropylacrylamide) (PNIPAM)-based microgels respond to temperature and exhibits a transition from swollen to deswollen state upon variation of temperature, which is known as volume phase transition (VPT). Dynamic light scattering (DLS) is a popular technique to identify the volume phase transition temperature (VPTT) of microgel particles, which measures variation of particle size with temperature in a suspension having microgel particle concentration of 107–108 particles/cm3. Here, we employ optical tweezers to trap a single microgel particle and identify its VPTT by measuring the lateral trap stiffness, κ as a function temperature. It is shown that near the VPTT, κ increases gradually upon increasing temperature, which is due to a gradual decrease in particle size with simultaneous increase in its refractive index.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tata BVR, Brijitta J, Joshi RG (2013) Thermo-responsive nanogel dispersions: dynamics and phase behavior. Int J Adv Eng Sci Appl Math 5:240–249CrossRef Tata BVR, Brijitta J, Joshi RG (2013) Thermo-responsive nanogel dispersions: dynamics and phase behavior. Int J Adv Eng Sci Appl Math 5:240–249CrossRef
2.
Zurück zum Zitat Joshi RG, Tata BVR, Brijitta J (2010) Pressure tuning of Bragg diffraction in stimuli responsive microgel crystals. AIP Conf Proc 1349:208–209 Joshi RG, Tata BVR, Brijitta J (2010) Pressure tuning of Bragg diffraction in stimuli responsive microgel crystals. AIP Conf Proc 1349:208–209
3.
Zurück zum Zitat Mohanty PS, Richtering W (2008) Structural ordering and phase behavior of charged microgels. J Phys Chem B 112:14692–14697CrossRef Mohanty PS, Richtering W (2008) Structural ordering and phase behavior of charged microgels. J Phys Chem B 112:14692–14697CrossRef
4.
Zurück zum Zitat Mao C, Lin Z, Guan Y, Zhang Y (2013) Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates. Angew Chem Int Ed 52:9961–9965CrossRef Mao C, Lin Z, Guan Y, Zhang Y (2013) Polymerized microgel colloidal crystals: photonic hydrogels with tunable band gaps and fast response rates. Angew Chem Int Ed 52:9961–9965CrossRef
5.
Zurück zum Zitat Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 33:8301–8306CrossRef Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 33:8301–8306CrossRef
6.
Zurück zum Zitat Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRef
7.
Zurück zum Zitat Chen L-Y, Chung-Mao O, Chen W-Y, Huang C-C, Chang H-T (2013) Synthesis of photoluminescent Au ND–PNIPAM hybrid microgel for the detection of Hg2+. Appl Mater Interfaces 5(10):4383–4388CrossRef Chen L-Y, Chung-Mao O, Chen W-Y, Huang C-C, Chang H-T (2013) Synthesis of photoluminescent Au ND–PNIPAM hybrid microgel for the detection of Hg2+. Appl Mater Interfaces 5(10):4383–4388CrossRef
8.
Zurück zum Zitat Luo Q, Guan Y, Zhang Y, Siddiq M (2010) Lead-sensitive PNIPAM microgels modified with crown ether groups. J Polym Sci A Polym Chem 48:4120–4127CrossRef Luo Q, Guan Y, Zhang Y, Siddiq M (2010) Lead-sensitive PNIPAM microgels modified with crown ether groups. J Polym Sci A Polym Chem 48:4120–4127CrossRef
9.
Zurück zum Zitat Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534–9537CrossRef Lee K, Asher SA (2000) Photonic crystal chemical sensors: pH and ionic strength. J Am Chem Soc 122:9534–9537CrossRef
10.
Zurück zum Zitat Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331CrossRef Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331CrossRef
11.
Zurück zum Zitat Asher SA, Kimble KW, Walker JP (2008) Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals. Chem Mater 20:7501–7509CrossRef Asher SA, Kimble KW, Walker JP (2008) Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals. Chem Mater 20:7501–7509CrossRef
12.
Zurück zum Zitat Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on template photo-polymerized hydrogel inverse opal. Sensors Actuators B 150:183–190CrossRef Shin J, Braun PV, Lee W (2010) Fast response photonic crystal pH sensor based on template photo-polymerized hydrogel inverse opal. Sensors Actuators B 150:183–190CrossRef
13.
Zurück zum Zitat Reese C, Mikhonin A, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496CrossRef Reese C, Mikhonin A, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496CrossRef
14.
Zurück zum Zitat Zhang Y, Yao Z, Li B (2007) Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 15(15):9287–9292CrossRef Zhang Y, Yao Z, Li B (2007) Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt Express 15(15):9287–9292CrossRef
15.
Zurück zum Zitat Joshi RG, Tata BVR, Brijitta J (2013) Dynamics in thermo-responsive nanogel crystals undergoing melting. J Chem Phys 139:124901CrossRef Joshi RG, Tata BVR, Brijitta J (2013) Dynamics in thermo-responsive nanogel crystals undergoing melting. J Chem Phys 139:124901CrossRef
16.
Zurück zum Zitat Polotsky AA, Plamper FA, Borisov OV (2013) Collapse-to-swelling transitions in pH- and thermoresponsive microgels in aqueous dispersions: the thermodynamic theory. Macromolecules. doi:10.1021/ma401402e Polotsky AA, Plamper FA, Borisov OV (2013) Collapse-to-swelling transitions in pH- and thermoresponsive microgels in aqueous dispersions: the thermodynamic theory. Macromolecules. doi:10.​1021/​ma401402e
17.
Zurück zum Zitat Brijitta J, Tata BVR, Kaliyappan T (2009) Phase behavior of poly (N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J Nanosci Nanotechnol 9:5323–5328CrossRef Brijitta J, Tata BVR, Kaliyappan T (2009) Phase behavior of poly (N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J Nanosci Nanotechnol 9:5323–5328CrossRef
18.
Zurück zum Zitat Bruce J. Berne, Robert Pecora (2003) Dynamic light scattering: with applications to Chemistry, Biology, and Physics. Dover Books on Physics Bruce J. Berne, Robert Pecora (2003) Dynamic light scattering: with applications to Chemistry, Biology, and Physics. Dover Books on Physics
19.
Zurück zum Zitat Sierra-Martin B, Retama JR, Laurenti M, FernándezBarbero A, Cabarcos EL (2014) Structure and polymer dynamics within PNIPAM-based microgel particles. Adv Colloid Interf Sci 205:113–123CrossRef Sierra-Martin B, Retama JR, Laurenti M, FernándezBarbero A, Cabarcos EL (2014) Structure and polymer dynamics within PNIPAM-based microgel particles. Adv Colloid Interf Sci 205:113–123CrossRef
20.
Zurück zum Zitat Takata S, Suzuki K, Norisuye T, Shibayama M (2002) Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer 43:3101–3107CrossRef Takata S, Suzuki K, Norisuye T, Shibayama M (2002) Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer 43:3101–3107CrossRef
21.
Zurück zum Zitat Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRef Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290CrossRef
22.
Zurück zum Zitat Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quantum Electron 6:841–856CrossRef Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quantum Electron 6:841–856CrossRef
23.
Zurück zum Zitat Kimura Y, Bianco PR (2006) Single molecule studies of DNA binding proteins using optical tweezers. Analyst 131(8):868–874CrossRef Kimura Y, Bianco PR (2006) Single molecule studies of DNA binding proteins using optical tweezers. Analyst 131(8):868–874CrossRef
24.
Zurück zum Zitat Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photon 5:318–321CrossRef Fazal FM, Block SM (2011) Optical tweezers study life under tension. Nat Photon 5:318–321CrossRef
25.
Zurück zum Zitat Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRef Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRef
26.
Zurück zum Zitat Ishii Y, Ishijima A, Yanagida T (2001) Single molecule nanomanipulation of biomolecules. Trends Biotechnol 19:211–216CrossRef Ishii Y, Ishijima A, Yanagida T (2001) Single molecule nanomanipulation of biomolecules. Trends Biotechnol 19:211–216CrossRef
27.
Zurück zum Zitat Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature (London) 421:423–427CrossRef Bustamante C, Bryant Z, Smith SB (2003) Ten years of tension: single-molecule DNA mechanics. Nature (London) 421:423–427CrossRef
28.
Zurück zum Zitat Wang K, Forbes JG, Jin AJ (2001) Single molecule measurements of titin elasticity. Prog Biophys Mol Biol 77:1–44CrossRef Wang K, Forbes JG, Jin AJ (2001) Single molecule measurements of titin elasticity. Prog Biophys Mol Biol 77:1–44CrossRef
29.
Zurück zum Zitat Grier DG (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid Interface Sci 2:264–270CrossRef Grier DG (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid Interface Sci 2:264–270CrossRef
30.
Zurück zum Zitat Grier DG (2003) A revolution in optical manipulation. Nature (London) 424:810–816CrossRef Grier DG (2003) A revolution in optical manipulation. Nature (London) 424:810–816CrossRef
31.
Zurück zum Zitat Korda PT, Taylor MB, Grier DG (2002) Kinetically locked-in colloidal transport in an array of optical tweezers. Phys Rev Lett 89:128301CrossRef Korda PT, Taylor MB, Grier DG (2002) Kinetically locked-in colloidal transport in an array of optical tweezers. Phys Rev Lett 89:128301CrossRef
32.
Zurück zum Zitat Crocker JC, Grier DG (1994) Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys Rev Lett 73:352–355CrossRef Crocker JC, Grier DG (1994) Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys Rev Lett 73:352–355CrossRef
33.
Zurück zum Zitat Knöner G, Parkin S, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2006) Measurement of the index of refraction of single microparticles. Phys Rev Lett 97:157402CrossRef Knöner G, Parkin S, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H (2006) Measurement of the index of refraction of single microparticles. Phys Rev Lett 97:157402CrossRef
34.
Zurück zum Zitat Tassier M, Evans RML, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14:115032CrossRef Tassier M, Evans RML, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14:115032CrossRef
35.
Zurück zum Zitat Hong Y, Pyo JW, Baek SH, Lee SW, Yoon DS, No K, Kim B-M (2010) Quantitative measurements of absolute dielectrophoretic forces using optical tweezers. Opt Lett 35:2493–2495CrossRef Hong Y, Pyo JW, Baek SH, Lee SW, Yoon DS, No K, Kim B-M (2010) Quantitative measurements of absolute dielectrophoretic forces using optical tweezers. Opt Lett 35:2493–2495CrossRef
36.
Zurück zum Zitat Mohanty PS, Richtering W (2008) Structural ordering and phase behavior of charged microgels. J Phys Chem B 112(47):14692–14697CrossRef Mohanty PS, Richtering W (2008) Structural ordering and phase behavior of charged microgels. J Phys Chem B 112(47):14692–14697CrossRef
37.
Zurück zum Zitat Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRef Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809CrossRef
38.
Zurück zum Zitat T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. .Heckenberg, H. Rubinsztein-Dunlop (2007) Optical tweezers computational toolbox. J Opt A Pure Appl Opt 9:S196-S203 T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. .Heckenberg, H. Rubinsztein-Dunlop (2007) Optical tweezers computational toolbox. J Opt A Pure Appl Opt 9:S196-S203
39.
Zurück zum Zitat Hiltner PA, Papir YS, Krieger IM (1971) Diffraction of light by nonaqueous ordered suspensions. JPhys Chem 75(12):1881–1886CrossRef Hiltner PA, Papir YS, Krieger IM (1971) Diffraction of light by nonaqueous ordered suspensions. JPhys Chem 75(12):1881–1886CrossRef
40.
Zurück zum Zitat Vermeulen KC, Wuite GJL, Stienen GJM, Schmidt CF (2006) Optical trap stiffness in the presence and absence of spherical aberrations. Appl Opt 45(8):1812–1819CrossRef Vermeulen KC, Wuite GJL, Stienen GJM, Schmidt CF (2006) Optical trap stiffness in the presence and absence of spherical aberrations. Appl Opt 45(8):1812–1819CrossRef
41.
Zurück zum Zitat R. S. Dutra, N. B. Viana, P. A. Maia Neto, H. M. Nussenzveig (2014) Absolute calibration of forces in optical tweezers. Phys. Rev. A (90):013825 R. S. Dutra, N. B. Viana, P. A. Maia Neto, H. M. Nussenzveig (2014) Absolute calibration of forces in optical tweezers. Phys. Rev. A (90):013825
42.
Zurück zum Zitat Borghese F, Denti P, Saija R, Iati MA (2007) Optical trapping of nonspherical particles in the T-matrix formalism. Opt Express 15(19):11985–11998CrossRef Borghese F, Denti P, Saija R, Iati MA (2007) Optical trapping of nonspherical particles in the T-matrix formalism. Opt Express 15(19):11985–11998CrossRef
Metadaten
Titel
Temperature-driven volume phase transition of a single stimuli-responsive microgel particle using optical tweezers
verfasst von
Deepak K. Gupta
D. Karthickeyan
B. V. R. Tata
T. R. Ravindran
Publikationsdatum
06.10.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 12/2016
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-016-3952-1

Weitere Artikel der Ausgabe 12/2016

Colloid and Polymer Science 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.