Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2019

28.03.2019

Temperature-induced phase transition, luminescence and magnetic properties of Eu2(MoO4)3 microcrystal red phosphors

verfasst von: Ruofei Tang, Huan Chen, Wanying Yin, Yanmei Li, Zhanglei Ning, Cheng Zhong, Yan Zhao, Xin Lai, Jian Bi, Daojiang Gao

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of Eu2(MoO4)3 crystals with different crystal structures have been successfully fabricated via a conventional ceramics process under different sintering temperatures. Using X-ray diffraction (XRD), Rietveld refinement, Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), differential thermal analysis (DTA), photoluminescence (PL) and vibrating sample magnetometer (VSM), the microstructures, luminescent and magnetic properties of the as-fabricated Eu2(MoO4)3 crystals have been investigated in detail. XRD, FT-IR and Rietveld refinement results show that the crystal structure of the final Eu2(MoO4)3 crystals can be remarkably influenced by the sintering temperature, exhibiting the phase transformation from tetragonal to monoclinic and then orthorhombic in the region of 600–1000 °C. SEM images manifest the sintering temperature has significantly influence on grain size and dispersity of the samples, although it has negligible effect on their morphology. DTA results confirm that the phase transition temperature for tetragonal to monoclinic and monoclinic to orthorhombic is 624 and 887 °C, respectively. PL results reveal that the excitation and emission intensities of the Eu2(MoO4)3 crystals initially increase and then decrease with increasing sintering temperature, given the maximum at 900 °C. VSM results indicate that all the as-fabricated Eu2(MoO4)3 crystals exhibit paramagnetic property. Our work can offer a simple and effective strategy to adjust the crystal structure of Eu2(MoO4)3 crystals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J.S.O. Evans, T.A. Mary, Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater. 2, 143–151 (2000)CrossRef J.S.O. Evans, T.A. Mary, Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int. J. Inorg. Mater. 2, 143–151 (2000)CrossRef
2.
Zurück zum Zitat N. Yamamoto, K. Yagi, G. Honjo, Electron microscopic studies of ferroelectric and ferroelastic Gd2(MoO4)3 Interactions between ferroelectric domain walls. Phys. Status Solidi A 42, 257–265 (1977)CrossRef N. Yamamoto, K. Yagi, G. Honjo, Electron microscopic studies of ferroelectric and ferroelastic Gd2(MoO4)3 Interactions between ferroelectric domain walls. Phys. Status Solidi A 42, 257–265 (1977)CrossRef
3.
Zurück zum Zitat B. Wang, X. Li, Q. Zeng, G. Yang, J. Luo, X. He, Y. Chen, Efficiently enhanced photoluminescence in Eu3+-doped Lu2(MoO4)3, by Gd3+ substituting. Mater. Res. Bull. 100, 97–101 (2018)CrossRef B. Wang, X. Li, Q. Zeng, G. Yang, J. Luo, X. He, Y. Chen, Efficiently enhanced photoluminescence in Eu3+-doped Lu2(MoO4)3, by Gd3+ substituting. Mater. Res. Bull. 100, 97–101 (2018)CrossRef
4.
Zurück zum Zitat Y. Wang, T. Honma, Y. Doi, Y. Hinatsu, T. Komatsu, Magnetism of β′-Gd2(MoO4)3 and photoluminescence of β′-Eu2(MoO4)3 crystallized in rare-earth molybdenum borate glasses. J. Ceram. Soc. Jpn. 121, 230–235 (2013)CrossRef Y. Wang, T. Honma, Y. Doi, Y. Hinatsu, T. Komatsu, Magnetism of β′-Gd2(MoO4)3 and photoluminescence of β′-Eu2(MoO4)3 crystallized in rare-earth molybdenum borate glasses. J. Ceram. Soc. Jpn. 121, 230–235 (2013)CrossRef
5.
Zurück zum Zitat J.J. Zhang, L.L. Li, W.W. Zi, N. Guo, L. Zou, S. Gan, G. Ji, Self-assembled CaMoO4 and CaMoO4: Eu3+ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties. J. Phys. Chem. Solids 75, 878–887 (2014)CrossRef J.J. Zhang, L.L. Li, W.W. Zi, N. Guo, L. Zou, S. Gan, G. Ji, Self-assembled CaMoO4 and CaMoO4: Eu3+ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties. J. Phys. Chem. Solids 75, 878–887 (2014)CrossRef
6.
Zurück zum Zitat L.K. Bharat, V.R. Bandi, J.S. Yu, Polyol mediated solvothermal synthesis and characterization of spindle shaped La2(MoO4)3: Eu3+ phosphors. Chem. Eng. J. 255, 205–213 (2014)CrossRef L.K. Bharat, V.R. Bandi, J.S. Yu, Polyol mediated solvothermal synthesis and characterization of spindle shaped La2(MoO4)3: Eu3+ phosphors. Chem. Eng. J. 255, 205–213 (2014)CrossRef
7.
Zurück zum Zitat D. Zhao, J.C. Shi, C.K. Nie, R.J. Zhang, Crystal structure and luminescent properties of two lithium lanthanide tungstate LiLn(WO4)2, (Ln = Sm, Eu). Optik 138, 476–486 (2017)CrossRef D. Zhao, J.C. Shi, C.K. Nie, R.J. Zhang, Crystal structure and luminescent properties of two lithium lanthanide tungstate LiLn(WO4)2, (Ln = Sm, Eu). Optik 138, 476–486 (2017)CrossRef
8.
Zurück zum Zitat F.B. Bacha, K. Guidara, M. Dammak, M. Megdiche, AC and DC conductivity study of ceramic compound NaGd(WO4)2, using impedance spectroscopy. J. Mater. Sci. Mater. Electron. 28, 10630–10639 (2017)CrossRef F.B. Bacha, K. Guidara, M. Dammak, M. Megdiche, AC and DC conductivity study of ceramic compound NaGd(WO4)2, using impedance spectroscopy. J. Mater. Sci. Mater. Electron. 28, 10630–10639 (2017)CrossRef
9.
Zurück zum Zitat Y. Liu, Y. Wang, L. Wang, Y.Y. Gu, S.H. Yu, Z.G. Lu, R. Sun, General synthesis of LiLn(MO4)2: Eu3+ (Ln = La, Eu, Gd, Y; M = W, Mo) nanophosphors for near UV-type LEDs. RSC Adv. 4, 4754–4762 (2014)CrossRef Y. Liu, Y. Wang, L. Wang, Y.Y. Gu, S.H. Yu, Z.G. Lu, R. Sun, General synthesis of LiLn(MO4)2: Eu3+ (Ln = La, Eu, Gd, Y; M = W, Mo) nanophosphors for near UV-type LEDs. RSC Adv. 4, 4754–4762 (2014)CrossRef
10.
Zurück zum Zitat B. Yan, J.H. Wu, NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO)2:Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature-solid state reaction, microstructure and photoluminescence. Mater. Chem. Phys. 116, 67–71 (2009)CrossRef B. Yan, J.H. Wu, NaY(MoO4)2:Eu3+ and NaY0.9Bi0.1(MoO)2:Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature-solid state reaction, microstructure and photoluminescence. Mater. Chem. Phys. 116, 67–71 (2009)CrossRef
11.
Zurück zum Zitat N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013)CrossRef N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013)CrossRef
12.
Zurück zum Zitat V.V. Sinitsyn, B.S. Redkin, A.P. Kiselev, S.Z. Shmurak, N.N. Kolesnikov, V.V. Kveder, E.G. Ponyatovsky, “White” phosphor on the basis of Gd2(MoO4)3: Tm, Tb, Eu single crystal. Solid State Sci. 46, 80–83 (2015)CrossRef V.V. Sinitsyn, B.S. Redkin, A.P. Kiselev, S.Z. Shmurak, N.N. Kolesnikov, V.V. Kveder, E.G. Ponyatovsky, “White” phosphor on the basis of Gd2(MoO4)3: Tm, Tb, Eu single crystal. Solid State Sci. 46, 80–83 (2015)CrossRef
13.
Zurück zum Zitat F. Baur, F. Glocker, T. Jüstel, Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 3, 2054–2064 (2015)CrossRef F. Baur, F. Glocker, T. Jüstel, Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 3, 2054–2064 (2015)CrossRef
14.
Zurück zum Zitat Y. Li, R. Pu, L. Wen, X. Peng, Z. Ning, B. Wu, Y. Zhao, X. Lai, J. Bi, D. Gao, La2 – xEuxMo2O9 (0 ≤ x ≤ 0.6) solid solution microcrystals: facile hydrothermal derived synthesis, microstructures and luminescence properties. J. Mater. Sci. Mater. Electron. 29, 12932–12943 (2018)CrossRef Y. Li, R. Pu, L. Wen, X. Peng, Z. Ning, B. Wu, Y. Zhao, X. Lai, J. Bi, D. Gao, La2 – xEuxMo2O9 (0 ≤ x ≤ 0.6) solid solution microcrystals: facile hydrothermal derived synthesis, microstructures and luminescence properties. J. Mater. Sci. Mater. Electron. 29, 12932–12943 (2018)CrossRef
15.
Zurück zum Zitat P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404, 856–858 (2000)CrossRef P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404, 856–858 (2000)CrossRef
16.
Zurück zum Zitat Z.Y. Hou, H.Z. Lian, M.L. Zhang, L. Wang, M. Lü, C. Zhang, J. Lin, Preparation and luminescence properties of Gd2MoO6: Eu3+ nanofibers and nanobelts by electrospinning. J. Electrochem. Soc. 156, J209–J214 (2009)CrossRef Z.Y. Hou, H.Z. Lian, M.L. Zhang, L. Wang, M. Lü, C. Zhang, J. Lin, Preparation and luminescence properties of Gd2MoO6: Eu3+ nanofibers and nanobelts by electrospinning. J. Electrochem. Soc. 156, J209–J214 (2009)CrossRef
17.
Zurück zum Zitat Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors. Dalton Trans. 45, 11214–11232 (2016)CrossRef Z. Xia, Z. Xu, M. Chen, Q. Liu, Recent developments in the new inorganic solid-state LED phosphors. Dalton Trans. 45, 11214–11232 (2016)CrossRef
18.
Zurück zum Zitat L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, Synthesis and luminescent properties of high brightness MLa(WO4)2: Eu3+, (M = Li, Na, K) and NaRE(WO4)2: Eu3+, (RE = Gd, Y, Lu) red phosphors. J. Lumin. 143, 14–20 (2013)CrossRef L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, Synthesis and luminescent properties of high brightness MLa(WO4)2: Eu3+, (M = Li, Na, K) and NaRE(WO4)2: Eu3+, (RE = Gd, Y, Lu) red phosphors. J. Lumin. 143, 14–20 (2013)CrossRef
19.
Zurück zum Zitat V. Dmitriev, V. Sinitsyn, R. Dilanian, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, H.P. Weber, In situ pressure-induced solid-state amorphization in Sm2(MoO4)3, Eu2(MoO4)3 and Gd2(MoO4)3 crystals: chemical decomposition scenario. J. Phys. Chem. Solids 64, 07–312 (2003)CrossRef V. Dmitriev, V. Sinitsyn, R. Dilanian, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, H.P. Weber, In situ pressure-induced solid-state amorphization in Sm2(MoO4)3, Eu2(MoO4)3 and Gd2(MoO4)3 crystals: chemical decomposition scenario. J. Phys. Chem. Solids 64, 07–312 (2003)CrossRef
20.
Zurück zum Zitat D. Machon, V.P. Dmitriev, V.V. Sinitsyn, G. Lucazeau, Eu2(MoO4)3, single crystal at high pressure: structural phase transitions and amorphization probed by fluorescence spectroscopy. Phys. Rev. B 70, 2516–2528 (2004)CrossRef D. Machon, V.P. Dmitriev, V.V. Sinitsyn, G. Lucazeau, Eu2(MoO4)3, single crystal at high pressure: structural phase transitions and amorphization probed by fluorescence spectroscopy. Phys. Rev. B 70, 2516–2528 (2004)CrossRef
21.
Zurück zum Zitat B.G. Bazarov, O.D. Chimitova, R.F. Klevtsova, Y.L. Tushinov, L.A. Glinskaya, Z.G. Bazarova, Crystal structure of a new ternary molybdate in the Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 system. J. Struct. Chem. 49, 53–57 (2008)CrossRef B.G. Bazarov, O.D. Chimitova, R.F. Klevtsova, Y.L. Tushinov, L.A. Glinskaya, Z.G. Bazarova, Crystal structure of a new ternary molybdate in the Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 system. J. Struct. Chem. 49, 53–57 (2008)CrossRef
22.
Zurück zum Zitat T.H. Yeh, C.C. Lee, C.J. Shih, G. Kumar, S. Biring, S.W. Liu, Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Org. Electron. 59, 266–271 (2018)CrossRef T.H. Yeh, C.C. Lee, C.J. Shih, G. Kumar, S. Biring, S.W. Liu, Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Org. Electron. 59, 266–271 (2018)CrossRef
23.
Zurück zum Zitat M. Kotaka, T. Honma, T. Komatsu, Crystallization behavior of β′-Gd2(MoO4)3 and Gd4Mo7O27 in composition designed Gd2O3-MoO3-B2O3 glasses. J. Non-Cryst. Solids 498, 437–442 (2018)CrossRef M. Kotaka, T. Honma, T. Komatsu, Crystallization behavior of β′-Gd2(MoO4)3 and Gd4Mo7O27 in composition designed Gd2O3-MoO3-B2O3 glasses. J. Non-Cryst. Solids 498, 437–442 (2018)CrossRef
24.
Zurück zum Zitat S.A. Hayward, S.A.T. Redfern, Thermodynamic nature of and spontaneous strain below the cubic–monoclinic phase transition in La2Mo2O9. J. Phys. Condens. Matter 16, 3571–3583 (2004)CrossRef S.A. Hayward, S.A.T. Redfern, Thermodynamic nature of and spontaneous strain below the cubic–monoclinic phase transition in La2Mo2O9. J. Phys. Condens. Matter 16, 3571–3583 (2004)CrossRef
25.
Zurück zum Zitat R. Velchuri, S. Palla, G. Ravi, N.K. Veldurthi, J.R. Reddy, M. Vithal, Metathesis synthesis, characterization, spectral and photoactivity studies of Ln2/3MoO4 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er and Y). J. Rare Earths 33, 837–845 (2015)CrossRef R. Velchuri, S. Palla, G. Ravi, N.K. Veldurthi, J.R. Reddy, M. Vithal, Metathesis synthesis, characterization, spectral and photoactivity studies of Ln2/3MoO4 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er and Y). J. Rare Earths 33, 837–845 (2015)CrossRef
26.
Zurück zum Zitat S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)CrossRef S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)CrossRef
27.
Zurück zum Zitat S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)CrossRef S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45, 3612–3620 (2016)CrossRef
28.
Zurück zum Zitat V. Ramakrishnan, G. Aruldhas, The IR and Raman spectra of Tb0.2Dy0.9Gd0.9(MoO4)3. Infrared Phys. 26, 93–96 (1986)CrossRef V. Ramakrishnan, G. Aruldhas, The IR and Raman spectra of Tb0.2Dy0.9Gd0.9(MoO4)3. Infrared Phys. 26, 93–96 (1986)CrossRef
29.
Zurück zum Zitat V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 118, 15404–15411 (2014)CrossRef V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 118, 15404–15411 (2014)CrossRef
30.
Zurück zum Zitat V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Potential visible light emitting rare-earth activated Ca0.5Y1–x(MoO4)2: RE3+, (RE = Pr, Sm, Eu, Tb, Dy) phosphors for solid state lighting applications. J. Mater. Sci. Mater. Electron. 26, 1–11 (2015) V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Potential visible light emitting rare-earth activated Ca0.5Y1–x(MoO4)2: RE3+, (RE = Pr, Sm, Eu, Tb, Dy) phosphors for solid state lighting applications. J. Mater. Sci. Mater. Electron. 26, 1–11 (2015)
31.
Zurück zum Zitat Y. Er, Controlled synthesis and luminescence properties of Ca0.5Y1–x(MoO4)2: xRE3+, (RE = Eu, Pr, Sm, Tb, Dy. Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition. Electron. Mater. Lett. 12, 32–47 (2016)CrossRef Y. Er, Controlled synthesis and luminescence properties of Ca0.5Y1–x(MoO4)2: xRE3+, (RE = Eu, Pr, Sm, Tb, Dy. Yb/Tm, and Yb/Ho) phosphors by hydrothermal method versus pulsed laser deposition. Electron. Mater. Lett. 12, 32–47 (2016)CrossRef
32.
Zurück zum Zitat J. Zhong, M. Xu, D. Chen, G. Xiao, Z. Ji, Novel red-emitting Sr2LaSbO6:Eu3+ phosphor with enhanced 5D0→7F4 transition for warm white light-emitting diodes. Dyes Pigment. 146, 272–278 (2017)CrossRef J. Zhong, M. Xu, D. Chen, G. Xiao, Z. Ji, Novel red-emitting Sr2LaSbO6:Eu3+ phosphor with enhanced 5D07F4 transition for warm white light-emitting diodes. Dyes Pigment. 146, 272–278 (2017)CrossRef
33.
Zurück zum Zitat P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays. Chem. Eng. J. 337, 91–100 (2018)CrossRef P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu3+-activated NaBiF4 red-emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays. Chem. Eng. J. 337, 91–100 (2018)CrossRef
Metadaten
Titel
Temperature-induced phase transition, luminescence and magnetic properties of Eu2(MoO4)3 microcrystal red phosphors
verfasst von
Ruofei Tang
Huan Chen
Wanying Yin
Yanmei Li
Zhanglei Ning
Cheng Zhong
Yan Zhao
Xin Lai
Jian Bi
Daojiang Gao
Publikationsdatum
28.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01047-z

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science: Materials in Electronics 8/2019 Zur Ausgabe

Neuer Inhalt