Skip to main content
Erschienen in: Optical and Quantum Electronics 8/2016

01.08.2016

Temperature-insensitive, gain flattened erbium-doped photonic crystal fiber amplifier: a compatible solution

verfasst von: A. Maity, S. K. Varshney

Erschienen in: Optical and Quantum Electronics | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An all-silica, erbium-doped photonic crystal fiber (PCF) has been investigated numerically to achieve temperature insensitive amplification for optical communication applications. The careful engineering of PCF microstructured air-hole cladding offers two distinct advantages over conventional fibers, namely, compatible mode area and large modal overlap which can be controlled accurately to lower the splice loss and shorten the fiber length respectively. Splice loss as low as 0.22 dB and fiber length as short as 3.25 m for 190 mW pump power and 1 µW signal power, have been achieved in this work. Apart from these two existing advantages, a third advantage has been highlighted and numerically verified in this paper. This third advantage concerns the realization of an athermal long period grating (LPG) filter to flatten the amplifier’s gain spectrum. The LPG which exhibits a gain ripple of 0.29 dB over a 25 nm wavelength band at room temperature (20 °C), does not respond significantly with temperature and sub-dB ripples within 0.64 dB are maintained when temperature changes over a 80 °C range (−20 to +60 °C). This athermal nature of the flattened gain spectrum is attributed to the single material composition of the PCF, which is clearly unachievable with conventional fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Behera, B.L., Maity, A., Varshney, S.K., Datta, R.: Theoretical investigations of trench-assisted large mode-area, low bend loss and single-mode microstructured core fibers. Opt. Commun. 307, 9–16 (2013)ADSCrossRef Behera, B.L., Maity, A., Varshney, S.K., Datta, R.: Theoretical investigations of trench-assisted large mode-area, low bend loss and single-mode microstructured core fibers. Opt. Commun. 307, 9–16 (2013)ADSCrossRef
Zurück zum Zitat Bhatia, V.: Properties and sensing aplications of long-period grating. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA (1996) Bhatia, V.: Properties and sensing aplications of long-period grating. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA (1996)
Zurück zum Zitat Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRef Birks, T.A., Knight, J.C., Russell, P.S.J.: Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)ADSCrossRef
Zurück zum Zitat Cucinotta, A., Poli, F., Selleri, S., Vincetti, L., Zoboli, M.: Amplification properties of Er3+- doped photonic crystal fibers. J. Lightwave Technol. 21, 782–788 (2003)ADSCrossRef Cucinotta, A., Poli, F., Selleri, S., Vincetti, L., Zoboli, M.: Amplification properties of Er3+- doped photonic crystal fibers. J. Lightwave Technol. 21, 782–788 (2003)ADSCrossRef
Zurück zum Zitat Cucinotta, A., Poli, F., Selleri, S.: Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers. IEEE Photon. Techol. Lett. 16, 2027–2029 (2004)ADSCrossRef Cucinotta, A., Poli, F., Selleri, S.: Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers. IEEE Photon. Techol. Lett. 16, 2027–2029 (2004)ADSCrossRef
Zurück zum Zitat Dawson, J.W., Messerly, M.J., Heebner, J.F., Pax, P.H., Sridharan, A.K., Bullington, A.L., Beach, B.J., Siders, C.W., Barty, C.P.J. and Dubinskii, M.: Power scaling analysis of fiber lasers and amplifiers based on non-silica materials. Proc. SPIE 7686, Laser technology for Defense and Security VI, 768611 (2010) Dawson, J.W., Messerly, M.J., Heebner, J.F., Pax, P.H., Sridharan, A.K., Bullington, A.L., Beach, B.J., Siders, C.W., Barty, C.P.J. and Dubinskii, M.: Power scaling analysis of fiber lasers and amplifiers based on non-silica materials. Proc. SPIE 7686, Laser technology for Defense and Security VI, 768611 (2010)
Zurück zum Zitat Dawson, J.W., Messerly, M.J., Beach, R.J., Shverdin, M.Y., Stappaerts, E.A., Sridharan, A.K., Pax, P.H., Heebner, J.E., Siders, C.W., Barty, C.P.J.: Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Exp. 16, 13240–13266 (2008)ADSCrossRef Dawson, J.W., Messerly, M.J., Beach, R.J., Shverdin, M.Y., Stappaerts, E.A., Sridharan, A.K., Pax, P.H., Heebner, J.E., Siders, C.W., Barty, C.P.J.: Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Exp. 16, 13240–13266 (2008)ADSCrossRef
Zurück zum Zitat Dobb, H., Kalli, K., Webb, D.J.: Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre. Opt. Commun. 260, 184–191 (2006)ADSCrossRef Dobb, H., Kalli, K., Webb, D.J.: Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre. Opt. Commun. 260, 184–191 (2006)ADSCrossRef
Zurück zum Zitat Erdogan, T.: Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A: 14, 1760–1773 (1997)ADSCrossRef Erdogan, T.: Cladding-mode resonances in short- and long-period fiber grating filters. J. Opt. Soc. Am. A: 14, 1760–1773 (1997)ADSCrossRef
Zurück zum Zitat Ghatak, A., Thyagarajan, K.: Introduction to fiber optics. Cambridge University Press India Pvt. Ltd., New Delhi (1999) Ghatak, A., Thyagarajan, K.: Introduction to fiber optics. Cambridge University Press India Pvt. Ltd., New Delhi (1999)
Zurück zum Zitat Harumoto, M., Shigehara, M., Suganuma, H.: Gain-flattening filter using long-period fiber gratings. J. Lightwave Technol. 20, 1027–1033 (2002)ADSCrossRef Harumoto, M., Shigehara, M., Suganuma, H.: Gain-flattening filter using long-period fiber gratings. J. Lightwave Technol. 20, 1027–1033 (2002)ADSCrossRef
Zurück zum Zitat Hilaire, S., Pagnoux, D., Roy, P., Février, S.: Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances. Opt. Exp. 14, 10865–10877 (2006)ADSCrossRef Hilaire, S., Pagnoux, D., Roy, P., Février, S.: Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances. Opt. Exp. 14, 10865–10877 (2006)ADSCrossRef
Zurück zum Zitat Houggard, K.G., Breong, J., Jarklev, A.: Low pump power photonic crystal fibre amplifiers. Electron. Lett. 39, 599–600 (2003)CrossRef Houggard, K.G., Breong, J., Jarklev, A.: Low pump power photonic crystal fibre amplifiers. Electron. Lett. 39, 599–600 (2003)CrossRef
Zurück zum Zitat Judkins, J.B., Pedrazzani, J.R., DiGiovanni, D.J., Vengsarkar, A.M.: Temperature-insensitive long period fiber gratings. Optical Fiber Communication Conference, OSA Technical Digest (online), paper PD1 (1996) Judkins, J.B., Pedrazzani, J.R., DiGiovanni, D.J., Vengsarkar, A.M.: Temperature-insensitive long period fiber gratings. Optical Fiber Communication Conference, OSA Technical Digest (online), paper PD1 (1996)
Zurück zum Zitat Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., de Sandro, P.D. : Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)CrossRef Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.S.J., de Sandro, P.D. : Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998)CrossRef
Zurück zum Zitat Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tiinnermann, A., IIiew, R., Lederer, F., Breong, J., Vienne, C., Petersson, A., Jakobsen, C.: High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp. 11, 818–823 (2003)ADSCrossRef Limpert, J., Schreiber, T., Nolte, S., Zellmer, H., Tiinnermann, A., IIiew, R., Lederer, F., Breong, J., Vienne, C., Petersson, A., Jakobsen, C.: High-power air-clad large-mode-area photonic crystal fiber laser. Opt. Exp. 11, 818–823 (2003)ADSCrossRef
Zurück zum Zitat Miao, Y., Liu, B., Zhang, K., Liu, Y., Zhang, H.: Temperature tenability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid. Appl. Phy. Lett. 98, 021103 (2011)ADSCrossRef Miao, Y., Liu, B., Zhang, K., Liu, Y., Zhang, H.: Temperature tenability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid. Appl. Phy. Lett. 98, 021103 (2011)ADSCrossRef
Zurück zum Zitat Mogilevtsev, D., Birks, T.A., Russell, P.S.J.: Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23, 1662–1664 (2000)ADSCrossRef Mogilevtsev, D., Birks, T.A., Russell, P.S.J.: Group-velocity dispersion in photonic crystal fibers. Opt. Lett. 23, 1662–1664 (2000)ADSCrossRef
Zurück zum Zitat Monro, T.M., Richardson, D.J., Bennett, P.J.: Developing holey fibres for evanescent field devices. Electron. Lett. 35, 1188–1189 (1999)CrossRef Monro, T.M., Richardson, D.J., Bennett, P.J.: Developing holey fibres for evanescent field devices. Electron. Lett. 35, 1188–1189 (1999)CrossRef
Zurück zum Zitat Mortensen, N.A.: Effective area of photonic crystal fibers. Opt. Exp. 10, 341–347 (2002)ADSCrossRef Mortensen, N.A.: Effective area of photonic crystal fibers. Opt. Exp. 10, 341–347 (2002)ADSCrossRef
Zurück zum Zitat Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, T.A., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)ADSCrossRef Ortigosa-Blanch, A., Knight, J.C., Wadsworth, W.J., Arriaga, J., Mangan, B.J., Birks, T.A., Russell, P.S.J.: Highly birefringent photonic crystal fibers. Opt. Lett. 25, 1325–1327 (2000)ADSCrossRef
Zurück zum Zitat Pulford, B., Dajani, L., Robin, C.: Near diffraction-limited, 811 W, single-frequency photonic crystal fiber amplifier. Conference on Lasers & Electro-optics: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N8 (2014) Pulford, B., Dajani, L., Robin, C.: Near diffraction-limited, 811 W, single-frequency photonic crystal fiber amplifier. Conference on Lasers & Electro-optics: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW3N8 (2014)
Zurück zum Zitat Qin, L., Wei, Z.X., Wang, Q.Y., Li, H.P., Zheng, W., Zhang, Y.S., Gao, D.S.: Compact temperature compensating package for long period fiber gratings. Opt. Mater. 14, 239–242 (2000)ADSCrossRef Qin, L., Wei, Z.X., Wang, Q.Y., Li, H.P., Zheng, W., Zhang, Y.S., Gao, D.S.: Compact temperature compensating package for long period fiber gratings. Opt. Mater. 14, 239–242 (2000)ADSCrossRef
Zurück zum Zitat Shima, K., Himeno, K., Sakai, T., Okude, S., Wada, A., Yamauchi, R.: A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber. Optical Fiber Communication Conference, OSA Technical Digest (online), paper FB2 (1997) Shima, K., Himeno, K., Sakai, T., Okude, S., Wada, A., Yamauchi, R.: A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber. Optical Fiber Communication Conference, OSA Technical Digest (online), paper FB2 (1997)
Zurück zum Zitat Vengsarkar, A.M., Pedrazzani, J.R., Judkins, J.B., Lemaire, P.J., Bergano, N.S., Davidson, C.R.: Long-period fiber-grating-based gain equalizers. Opt. Lett. 21, 336–338 (1996)ADSCrossRef Vengsarkar, A.M., Pedrazzani, J.R., Judkins, J.B., Lemaire, P.J., Bergano, N.S., Davidson, C.R.: Long-period fiber-grating-based gain equalizers. Opt. Lett. 21, 336–338 (1996)ADSCrossRef
Zurück zum Zitat Wadsworth, W.J., Knight, J.C., Reeves, W.H., Russell, P.S.J., Arriaga, J.: Yb3+-doped photonic crystal fibre laser. Electron. Lett. 36, 1452–1454 (2000)CrossRef Wadsworth, W.J., Knight, J.C., Reeves, W.H., Russell, P.S.J., Arriaga, J.: Yb3+-doped photonic crystal fibre laser. Electron. Lett. 36, 1452–1454 (2000)CrossRef
Zurück zum Zitat Xu, Z., Duan, K., Liu, Z., Wang, Y., Zhao, W.: Numerical analyses of splice losses of photonic crystal fibers. Opt. Commun. 282, 4527–4531 (2009)ADSCrossRef Xu, Z., Duan, K., Liu, Z., Wang, Y., Zhao, W.: Numerical analyses of splice losses of photonic crystal fibers. Opt. Commun. 282, 4527–4531 (2009)ADSCrossRef
Zurück zum Zitat Zhu, Y., Shum, P., Lu, C., Lacquet, B.M., Swart, P.L., Spammer, S.J.: EDFA gain flattening using phase-shifted long-period gratings. Microw. Opt. Technol. Lett. 37, 153–157 (2003)CrossRef Zhu, Y., Shum, P., Lu, C., Lacquet, B.M., Swart, P.L., Spammer, S.J.: EDFA gain flattening using phase-shifted long-period gratings. Microw. Opt. Technol. Lett. 37, 153–157 (2003)CrossRef
Metadaten
Titel
Temperature-insensitive, gain flattened erbium-doped photonic crystal fiber amplifier: a compatible solution
verfasst von
A. Maity
S. K. Varshney
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 8/2016
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0638-3

Weitere Artikel der Ausgabe 8/2016

Optical and Quantum Electronics 8/2016 Zur Ausgabe

Neuer Inhalt