Skip to main content
Erschienen in:

18.10.2024

Temporal and spatial data redundancy reduction using machine learning approach for IoT based heterogeneous wireless sensor networks

verfasst von: Blessina Preethi R, Saranya Nair M

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel befasst sich mit der Herausforderung der Datenredundanz in heterogenen drahtlosen Sensornetzwerken auf IoT-Basis, die die Netzwerkleistung und Energieeffizienz erheblich beeinflusst. Es stellt eine neue Methode mit dem Namen Temporal-Spatial Redundancy Reduction and Prediction Algorithm (TSRRPA) vor, die maschinelles Lernen nutzt, um redundante Daten sowohl auf der Knoten- als auch auf der Clusterkopfebene zu reduzieren. Die TSRRPA enthält Cosine-Ähnlichkeit zur Reduzierung zeitlicher Redundanzen und Extreme Learning Machine (ELM) zur räumlichen Redundanzbeseitigung. Darüber hinaus nutzt es Long Short-Term Memory (LSTM) zur Vorhersage von Daten und Knotenstatus, wodurch Datenzuverlässigkeit und Netzwerkeffizienz gewährleistet sind. Die vorgeschlagene Methode wird durch Echtzeit-Implementierung und Simulation validiert und zeigt im Vergleich zu bestehenden Methoden eine überlegene Leistung in Bezug auf Genauigkeit, Präzision, Sensitivität, Spezifität und Energieeffizienz. Dieser Artikel ist von entscheidender Bedeutung für Fachleute, die innovative Lösungen suchen, um die Leistung und Lebensdauer von IoT-basierten drahtlosen Sensornetzwerken zu verbessern.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Majid M, Habib S, Javed AR, Rizwan M, Gautam S, Thippa RG, Lin JC (2022) Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: a systematic literature review. Sensors 22(6):2087–2122 Majid M, Habib S, Javed AR, Rizwan M, Gautam S, Thippa RG, Lin JC (2022) Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: a systematic literature review. Sensors 22(6):2087–2122
2.
Zurück zum Zitat Yun WK, Yoo SJ (2021) Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access 9:10737–10750CrossRef Yun WK, Yoo SJ (2021) Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access 9:10737–10750CrossRef
3.
Zurück zum Zitat Khalifeh A, Tanash R, AlQudah M, Al-Agtash S (2023) Enhancing energy efficiency of IEEE 802.15.4- based industrial wireless sensor networks. J Ind Inf Integr 33:100460 Khalifeh A, Tanash R, AlQudah M, Al-Agtash S (2023) Enhancing energy efficiency of IEEE 802.15.4- based industrial wireless sensor networks. J Ind Inf Integr 33:100460
4.
Zurück zum Zitat Papageorgiou A, Cheng B, Kovacs E (2015) Real-time data reduction at the network edge of internet-of-things systems. In: 2015 11th International conference on network and service management (CNSM), IEEE pp 284 – 291 Papageorgiou A, Cheng B, Kovacs E (2015) Real-time data reduction at the network edge of internet-of-things systems. In: 2015 11th International conference on network and service management (CNSM), IEEE pp 284 – 291
5.
Zurück zum Zitat Sahar G, Abu Bakar KB, Zuhra FT, Rahim S, Bibi T, Hussain Madni SH (2021) Data redundancy reduction for energy-efficiency in wireless sensor networks: a comprehensive review. IEEE Access 9:157859–157888CrossRef Sahar G, Abu Bakar KB, Zuhra FT, Rahim S, Bibi T, Hussain Madni SH (2021) Data redundancy reduction for energy-efficiency in wireless sensor networks: a comprehensive review. IEEE Access 9:157859–157888CrossRef
6.
Zurück zum Zitat Yemeni Z, Wang H, Ismael WM, Wang Y, Chen Z (2021) Reliable spatial and temporal data redundancy reduction approach for WSN. Comput Net 185:107701CrossRef Yemeni Z, Wang H, Ismael WM, Wang Y, Chen Z (2021) Reliable spatial and temporal data redundancy reduction approach for WSN. Comput Net 185:107701CrossRef
7.
Zurück zum Zitat Xiao N (2018) hacking spatial data: an example of aggregation problems. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4(W8):231–232 Xiao N (2018) hacking spatial data: an example of aggregation problems. Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4(W8):231–232
8.
Zurück zum Zitat Thandapani P, Arunachalam M, Sundarraj D (2022) An approach to data redundancy reduction and secured data delivery using spatial-temporal correlation factors in heterogeneous mobile wireless sensor network. Int J Commun Syst 35(17):5322CrossRef Thandapani P, Arunachalam M, Sundarraj D (2022) An approach to data redundancy reduction and secured data delivery using spatial-temporal correlation factors in heterogeneous mobile wireless sensor network. Int J Commun Syst 35(17):5322CrossRef
9.
Zurück zum Zitat Dash L, Binod KP, Sambit KM, Kshira SS, Noor ZJ, Baz M, Mehedi M (2022) A data aggregation approach exploiting spatial and temporal correlation among sensor data in wireless sensor networks. Electronics 11(7):989–1006CrossRef Dash L, Binod KP, Sambit KM, Kshira SS, Noor ZJ, Baz M, Mehedi M (2022) A data aggregation approach exploiting spatial and temporal correlation among sensor data in wireless sensor networks. Electronics 11(7):989–1006CrossRef
10.
Zurück zum Zitat Ismael WM, Gao M, Chen Z, Yemeni Z, Hawbani A, Zhang X (2021) EDCRA-IoT: Edge-based data conflict resolution approach for internet of things. Pervasive Mob Comput 72:101318CrossRef Ismael WM, Gao M, Chen Z, Yemeni Z, Hawbani A, Zhang X (2021) EDCRA-IoT: Edge-based data conflict resolution approach for internet of things. Pervasive Mob Comput 72:101318CrossRef
11.
Zurück zum Zitat Alkhatib Ahmad AA, Abed-Al Q (2021) Multivariate outlier detection for forest fire data aggregation accuracy. Intell Autom Soft Comput 31:1071–1087CrossRef Alkhatib Ahmad AA, Abed-Al Q (2021) Multivariate outlier detection for forest fire data aggregation accuracy. Intell Autom Soft Comput 31:1071–1087CrossRef
12.
Zurück zum Zitat Daniel-Ioan C, Volosencu C, Pescaru D, Lucian J, Doboli A (2009) Redundancy and its applications in wireless sensor networks: a survey. WSEAS Trans Comput 8:705–714 Daniel-Ioan C, Volosencu C, Pescaru D, Lucian J, Doboli A (2009) Redundancy and its applications in wireless sensor networks: a survey. WSEAS Trans Comput 8:705–714
13.
Zurück zum Zitat Begum BA, Nandury SV (2023) Data aggregation protocols for WSN and IoT applications: A comprehensive survey. J King Saud Univ - Comput Inf Sci 35(2):651–681 Begum BA, Nandury SV (2023) Data aggregation protocols for WSN and IoT applications: A comprehensive survey. J King Saud Univ - Comput Inf Sci 35(2):651–681
14.
Zurück zum Zitat Zhang J, Dong C (2023) Secure and lightweight data aggregation scheme for anonymous multi-receivers in WBAN. IEEE Trans Netw Sci Eng 10(1):81–91MathSciNetCrossRef Zhang J, Dong C (2023) Secure and lightweight data aggregation scheme for anonymous multi-receivers in WBAN. IEEE Trans Netw Sci Eng 10(1):81–91MathSciNetCrossRef
15.
Zurück zum Zitat Chen Y, Martinez-Ortega JF, Lopez L, Yu H, Yang Z (2021) A dynamic membership group-based multiple-data aggregation scheme for smart grid. IEEE Internet of Things J 8(15):12360–12374CrossRef Chen Y, Martinez-Ortega JF, Lopez L, Yu H, Yang Z (2021) A dynamic membership group-based multiple-data aggregation scheme for smart grid. IEEE Internet of Things J 8(15):12360–12374CrossRef
16.
Zurück zum Zitat Jesus P, Baquero C, Almeida PS (2015) A survey of distributed data aggregation algorithms. IEEE Commun Surv Tutorials 17(1):381–404CrossRef Jesus P, Baquero C, Almeida PS (2015) A survey of distributed data aggregation algorithms. IEEE Commun Surv Tutorials 17(1):381–404CrossRef
17.
Zurück zum Zitat Goyal N, Dave M, Verma AK (2019) Data aggregation in underwater wireless sensor network: Recent approaches and issues. J King Saud Univ - Comput Inf Sci 31(3):275–286 Goyal N, Dave M, Verma AK (2019) Data aggregation in underwater wireless sensor network: Recent approaches and issues. J King Saud Univ - Comput Inf Sci 31(3):275–286
18.
Zurück zum Zitat Mashere MP, Barve SS, Ganjewar PD (2015) Data Reduction in Wireless Sensor Networks:Survey. Int J Comput Sci Technol 8491:86–88 Mashere MP, Barve SS, Ganjewar PD (2015) Data Reduction in Wireless Sensor Networks:Survey. Int J Comput Sci Technol 8491:86–88
19.
Zurück zum Zitat Curiac DI, Volosencu C, Pescaru D, Jurca L, Doboli A (2019) Redundancy and its applications in wireless sensor networks: A survey. WSEAS Trans Comput 8(4):705–714 Curiac DI, Volosencu C, Pescaru D, Jurca L, Doboli A (2019) Redundancy and its applications in wireless sensor networks: A survey. WSEAS Trans Comput 8(4):705–714
20.
Zurück zum Zitat Verma N, Singh D (2018) data redundancy implications in wireless sensor networks. Procedia Comput Sci 132:1210–1217CrossRef Verma N, Singh D (2018) data redundancy implications in wireless sensor networks. Procedia Comput Sci 132:1210–1217CrossRef
21.
Zurück zum Zitat Nazaktabar H, Badie K, Nili M (2017) RLSP: a signal prediction algorithm for energy conservation in wireless sensor networks. Wirel Netw 23(3):919–933CrossRef Nazaktabar H, Badie K, Nili M (2017) RLSP: a signal prediction algorithm for energy conservation in wireless sensor networks. Wirel Netw 23(3):919–933CrossRef
22.
Zurück zum Zitat Idrees AK, Alhussaini R, Salman MA (2020) Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs. Pers Ubiquitous Comput 27:139–158CrossRef Idrees AK, Alhussaini R, Salman MA (2020) Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs. Pers Ubiquitous Comput 27:139–158CrossRef
23.
Zurück zum Zitat Al-Qurabat AKM, Idrees AK (2019) Two level data aggregation protocol for prolonging lifetime of periodic sensor networks. Wirel Networks 25(6):3623–3641 Al-Qurabat AKM, Idrees AK (2019) Two level data aggregation protocol for prolonging lifetime of periodic sensor networks. Wirel Networks 25(6):3623–3641
24.
Zurück zum Zitat Al-Qurabat, AKM, Jaoude CA, Idrees AK (2019) Two tier data reduction technique for reducing data transmission in IoT sensors. 15th Int Wirel Commun Mob Comput Conf IWCMC pp 168-173 Al-Qurabat, AKM, Jaoude CA, Idrees AK (2019) Two tier data reduction technique for reducing data transmission in IoT sensors. 15th Int Wirel Commun Mob Comput Conf IWCMC pp 168-173
25.
Zurück zum Zitat Harb H, Makhoul A, Jaber A, Tawbi S (2019) Energy efficient data collection in periodic sensor networks using spatio-temporal node correlation. Int J Sens Networks 29(1):1–15CrossRef Harb H, Makhoul A, Jaber A, Tawbi S (2019) Energy efficient data collection in periodic sensor networks using spatio-temporal node correlation. Int J Sens Networks 29(1):1–15CrossRef
26.
Zurück zum Zitat Karaki A, Nasser A, Jaoude CA, Harb H (2019) An adaptive sampling technique for massive data collection in distributed sensor networks. In 2019 15th International wireless communications and mobile computing conference (IWCMC 2019), pp1255–1260 Karaki A, Nasser A, Jaoude CA, Harb H (2019) An adaptive sampling technique for massive data collection in distributed sensor networks. In 2019 15th International wireless communications and mobile computing conference (IWCMC 2019), pp1255–1260
27.
Zurück zum Zitat Zhou Y, Yang L, Yang L, Ni M (2019) Novel energy-efficient data gathering scheme exploiting spatial-temporal correlation for wireless sensor networks. Wirel Commun Mob Comput 4182563 Zhou Y, Yang L, Yang L, Ni M (2019) Novel energy-efficient data gathering scheme exploiting spatial-temporal correlation for wireless sensor networks. Wirel Commun Mob Comput 4182563
28.
Zurück zum Zitat Tayeh GB, Makhoul A, Perera C, Demerjian J (2019) A spatial-temporal correlation approach for data reduction in cluster-based sensor networks. IEEE Access 7:50669–50680CrossRef Tayeh GB, Makhoul A, Perera C, Demerjian J (2019) A spatial-temporal correlation approach for data reduction in cluster-based sensor networks. IEEE Access 7:50669–50680CrossRef
29.
Zurück zum Zitat Strypsteen T, Bertrand A (2023) Bandwidth-efficient distributed neural network architectures with application to neuro-sensor networks. IEEE J Biomed Health Inf 27(2):933–943CrossRef Strypsteen T, Bertrand A (2023) Bandwidth-efficient distributed neural network architectures with application to neuro-sensor networks. IEEE J Biomed Health Inf 27(2):933–943CrossRef
30.
Zurück zum Zitat Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670CrossRef Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1(4):660–670CrossRef
31.
Zurück zum Zitat Jha V, Sharma R (2022) An energy efficient weighted clustering algorithm in heterogeneous wireless sensor networks. J Supercomput 78:14266–14293CrossRef Jha V, Sharma R (2022) An energy efficient weighted clustering algorithm in heterogeneous wireless sensor networks. J Supercomput 78:14266–14293CrossRef
32.
Zurück zum Zitat Tran KTM, Oh SH, Byun JY (2013) Well-suited similarity functions for data aggregation in cluster-based underwater wireless sensor networks. Int J Distrib Sensor Netw 9(8):645243CrossRef Tran KTM, Oh SH, Byun JY (2013) Well-suited similarity functions for data aggregation in cluster-based underwater wireless sensor networks. Int J Distrib Sensor Netw 9(8):645243CrossRef
33.
Zurück zum Zitat Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2006) Extreme learning machine: Theory and applications. Neurocomputing 70:489–501 Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2006) Extreme learning machine: Theory and applications. Neurocomputing 70:489–501
34.
Zurück zum Zitat Sepp Hochreiter, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput 9(8):1735–1780CrossRef Sepp Hochreiter, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput 9(8):1735–1780CrossRef
35.
Zurück zum Zitat Rusul L, Abduljabbar Hussein D, Pei-Wei T (2021) Unidirectional and bidirectional LSTM models for short-term traffic prediction. J Adv Trans 5589075:1–16 Rusul L, Abduljabbar Hussein D, Pei-Wei T (2021) Unidirectional and bidirectional LSTM models for short-term traffic prediction. J Adv Trans 5589075:1–16
36.
Zurück zum Zitat Ullah I, Youn H (2020) Efficient data aggregation with node clustering and extreme learning machine for WSN. J Supercomput 76:10009–10035CrossRef Ullah I, Youn H (2020) Efficient data aggregation with node clustering and extreme learning machine for WSN. J Supercomput 76:10009–10035CrossRef
37.
Zurück zum Zitat Jagan GC, Jesu JP (2022) A Novel Machine Language-Driven Data Aggregation Approach to Predict Data Redundancy in IoT-Connected Wireless Sensor Networks. Wirel Commun Mob Comput 7096561:1–20CrossRef Jagan GC, Jesu JP (2022) A Novel Machine Language-Driven Data Aggregation Approach to Predict Data Redundancy in IoT-Connected Wireless Sensor Networks. Wirel Commun Mob Comput 7096561:1–20CrossRef
Metadaten
Titel
Temporal and spatial data redundancy reduction using machine learning approach for IoT based heterogeneous wireless sensor networks
verfasst von
Blessina Preethi R
Saranya Nair M
Publikationsdatum
18.10.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 6/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01803-x