Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2018

13.09.2018

Tension–Compression Asymmetry Improved by Cold Extrusion in Pure Magnesium

verfasst von: Cheng-jie Li, Shuang Cheng, Hong-fei Sun, Gui-chao Bai, Wen-bin Fang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, cold extrusion was successfully used to fabricate the fine-grained pure Mg bar with average grain size of 2.5 μm. The microstructure, texture and mechanical properties were evaluated by electron backscattering diffraction and mechanical test. The results showed that the corresponding yield strengths for as-extruded fine-grained pure Mg were 130.8 MPa in tension and 125.6 MPa in compression, leading to a greatly improved yield asymmetry ratio. The improvement in tension–compression asymmetry is mainly due to grain refinement which favors the suppression of deformation twinning in compression and promotion of multi-deformation modes both in tension and compression at small strains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Bettles and M. Gibson, Current Wrought Magnesium Alloys Strengths and Weaknesses, JOM, 2005, 57, p 46–49CrossRef C. Bettles and M. Gibson, Current Wrought Magnesium Alloys Strengths and Weaknesses, JOM, 2005, 57, p 46–49CrossRef
2.
Zurück zum Zitat H.L. Kim, W.K. Bang, and Y.W. Chang, Deformation Behavior of As-Rolled and Strip-Cast AZ31 Magnesium Alloy Sheets, Mater. Sci. Eng. A, 2011, 528, p 5356–5365CrossRef H.L. Kim, W.K. Bang, and Y.W. Chang, Deformation Behavior of As-Rolled and Strip-Cast AZ31 Magnesium Alloy Sheets, Mater. Sci. Eng. A, 2011, 528, p 5356–5365CrossRef
3.
Zurück zum Zitat B. Song, H. Pan, W. Ren, N. Guo, Z. Wu, and R. Xin, Tension–Compression Asymmetry of a Rolled Mg-Y-Nd Alloy, Met. Mater. Int., 2017, 23, p 683–690CrossRef B. Song, H. Pan, W. Ren, N. Guo, Z. Wu, and R. Xin, Tension–Compression Asymmetry of a Rolled Mg-Y-Nd Alloy, Met. Mater. Int., 2017, 23, p 683–690CrossRef
4.
Zurück zum Zitat G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Grain Size and Texture Effect on Compression Behavior of Hot-Extruded Mg-3Al-1Zn Alloys at Room Temperature, Mater. Charact., 2014, 94, p 178–188CrossRef G.K. Meenashisundaram, S. Seetharaman, and M. Gupta, Grain Size and Texture Effect on Compression Behavior of Hot-Extruded Mg-3Al-1Zn Alloys at Room Temperature, Mater. Charact., 2014, 94, p 178–188CrossRef
5.
Zurück zum Zitat T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, A High-Strength Mg-Sn-Zn-Al Alloy Extruded at Low Temperature, Scr. Mater., 2008, 59, p 1111–1114CrossRef T.T. Sasaki, K. Yamamoto, T. Honma, S. Kamado, and K. Hono, A High-Strength Mg-Sn-Zn-Al Alloy Extruded at Low Temperature, Scr. Mater., 2008, 59, p 1111–1114CrossRef
6.
Zurück zum Zitat S. Sankaranarayanan, U. Pranav Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response, J. Alloys Compd., 2014, 615, p 211–219CrossRef S. Sankaranarayanan, U. Pranav Nayak, R.K. Sabat, S. Suwas, A. Almajid, and M. Gupta, Nano-ZnO Particle Addition to Monolithic Magnesium for Enhanced Tensile and Compressive Response, J. Alloys Compd., 2014, 615, p 211–219CrossRef
7.
Zurück zum Zitat S. Kamrani and C. Fleck, Effects of Calcium and Rare-Earth Elements on the Microstructure and Tension–Compression Yield Asymmetry of ZEK100 Alloy, Mater. Sci. Eng. A, 2014, 618, p 238–243CrossRef S. Kamrani and C. Fleck, Effects of Calcium and Rare-Earth Elements on the Microstructure and Tension–Compression Yield Asymmetry of ZEK100 Alloy, Mater. Sci. Eng. A, 2014, 618, p 238–243CrossRef
8.
Zurück zum Zitat S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263CrossRef S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263CrossRef
9.
Zurück zum Zitat Z. Zachariah, S.S.V. Tatiparti, S.K. Mishra, N. Ramakrishnan, and U. Ramamurty, Tension–Compression Asymmetry in an Extruded Mg Alloy AM30: Temperature and Strain Rate Effects, Mater. Sci. Eng. A, 2013, 572, p 8–18CrossRef Z. Zachariah, S.S.V. Tatiparti, S.K. Mishra, N. Ramakrishnan, and U. Ramamurty, Tension–Compression Asymmetry in an Extruded Mg Alloy AM30: Temperature and Strain Rate Effects, Mater. Sci. Eng. A, 2013, 572, p 8–18CrossRef
10.
Zurück zum Zitat J. He, T. Liu, S. Xu, and Y. Zhang, The Effects of Compressive Pre-deformation on Yield Asymmetry in Hot-Extruded Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2013, 579, p 1–8CrossRef J. He, T. Liu, S. Xu, and Y. Zhang, The Effects of Compressive Pre-deformation on Yield Asymmetry in Hot-Extruded Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2013, 579, p 1–8CrossRef
11.
Zurück zum Zitat A. Singh, Y. Osawa, H. Somekawa, and T. Mukai, Effect of Microstructure on Strength and Ductility of High Strength Quasicrystal Phase Dispersed Mg-Zn-Y Alloys, Mater. Sci. Eng. A, 2014, 611, p 242–251CrossRef A. Singh, Y. Osawa, H. Somekawa, and T. Mukai, Effect of Microstructure on Strength and Ductility of High Strength Quasicrystal Phase Dispersed Mg-Zn-Y Alloys, Mater. Sci. Eng. A, 2014, 611, p 242–251CrossRef
12.
Zurück zum Zitat C. Lv, T. Liu, D. Liu, S. Jiang, and W. Zeng, Effect of Heat Treatment on Tension–Compression Yield Asymmetry of AZ80 Magnesium Alloy, Mater. Des., 2012, 33, p 529–533CrossRef C. Lv, T. Liu, D. Liu, S. Jiang, and W. Zeng, Effect of Heat Treatment on Tension–Compression Yield Asymmetry of AZ80 Magnesium Alloy, Mater. Des., 2012, 33, p 529–533CrossRef
13.
Zurück zum Zitat S. Xu, T. Liu, H. Chen, Z. Miao, Z. Zhang, and W. Zeng, Reducing the Tension–Compression Yield Asymmetry in a Hot-Rolled Mg-3Al-1Zn Alloy via Multidirectional Pre-compression, Mater. Sci. Eng. A, 2013, 565, p 96–101CrossRef S. Xu, T. Liu, H. Chen, Z. Miao, Z. Zhang, and W. Zeng, Reducing the Tension–Compression Yield Asymmetry in a Hot-Rolled Mg-3Al-1Zn Alloy via Multidirectional Pre-compression, Mater. Sci. Eng. A, 2013, 565, p 96–101CrossRef
14.
Zurück zum Zitat J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension–Compression Yield Asymmetry in a Mg-8Al-0.5Zn Alloy via Precipitation, Scr. Mater., 2010, 62, p 301–304CrossRef J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Reducing the Tension–Compression Yield Asymmetry in a Mg-8Al-0.5Zn Alloy via Precipitation, Scr. Mater., 2010, 62, p 301–304CrossRef
15.
Zurück zum Zitat J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmelík, P. Lukáč, and K.U. Kainer, On the Influence of the Grain Size and Solute Content on the AE Response of Magnesium Alloys Tested in Tension and Compression, Mater. Sci. Eng. A, 2007, 462, p 302–306CrossRef J. Bohlen, P. Dobroň, J. Swiostek, D. Letzig, F. Chmelík, P. Lukáč, and K.U. Kainer, On the Influence of the Grain Size and Solute Content on the AE Response of Magnesium Alloys Tested in Tension and Compression, Mater. Sci. Eng. A, 2007, 462, p 302–306CrossRef
16.
Zurück zum Zitat S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, Effect of Individual and Combined Addition of Micro/Nano-Sized Metallic Elements on the Microstructure and Mechanical Properties of Pure Mg, Mater. Des., 2012, 37, p 274–284CrossRef S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, Effect of Individual and Combined Addition of Micro/Nano-Sized Metallic Elements on the Microstructure and Mechanical Properties of Pure Mg, Mater. Des., 2012, 37, p 274–284CrossRef
17.
Zurück zum Zitat H.-F. Sun, C.-J. Li, Y. Xie, and W.-B. Fang, Microstructures and Mechanical Properties of Pure Magnesium Bars by High Ratio Extrusion and Its Subsequent Annealing Treatment, Trans. Nonferr. Met. Soc. China, 2012, 22, p s445–s449CrossRef H.-F. Sun, C.-J. Li, Y. Xie, and W.-B. Fang, Microstructures and Mechanical Properties of Pure Magnesium Bars by High Ratio Extrusion and Its Subsequent Annealing Treatment, Trans. Nonferr. Met. Soc. China, 2012, 22, p s445–s449CrossRef
18.
Zurück zum Zitat Y. Qiao, X. Wang, Z. Liu, and E. Wang, Effect of Temperature on Microstructures, Texture and Mechanical Properties of Hot Rolled Pure Mg Sheets, Mater. Sci. Eng. A, 2013, 568, p 202–205CrossRef Y. Qiao, X. Wang, Z. Liu, and E. Wang, Effect of Temperature on Microstructures, Texture and Mechanical Properties of Hot Rolled Pure Mg Sheets, Mater. Sci. Eng. A, 2013, 568, p 202–205CrossRef
19.
Zurück zum Zitat A. Mallick, K.S. Tun, S. Vedantam, and M. Gupta, Mechanical Characteristics of Pure Mg and a Mg/Y2O3 Nanocomposite in the 25-250 °C Temperature Range, J. Mater. Sci., 2010, 45, p 3058–3066CrossRef A. Mallick, K.S. Tun, S. Vedantam, and M. Gupta, Mechanical Characteristics of Pure Mg and a Mg/Y2O3 Nanocomposite in the 25-250 °C Temperature Range, J. Mater. Sci., 2010, 45, p 3058–3066CrossRef
20.
Zurück zum Zitat H. Somekawa and T. Mukai, Effect of Grain Refinement on Fracture Toughness in Extruded Pure Magnesium, Scr. Mater., 2005, 53, p 1059–1064CrossRef H. Somekawa and T. Mukai, Effect of Grain Refinement on Fracture Toughness in Extruded Pure Magnesium, Scr. Mater., 2005, 53, p 1059–1064CrossRef
21.
Zurück zum Zitat G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu, and I.S. Golovin, Improved Mechanical Property and Internal Friction of Pure Mg Processed by ECAP, Mater. Sci. Eng. A, 2012, 556, p 588–594CrossRef G.D. Fan, M.Y. Zheng, X.S. Hu, C. Xu, K. Wu, and I.S. Golovin, Improved Mechanical Property and Internal Friction of Pure Mg Processed by ECAP, Mater. Sci. Eng. A, 2012, 556, p 588–594CrossRef
22.
Zurück zum Zitat F.S.J. Poggiali, C.L.P. Silva, P.H.R. Pereira, R.B. Figueiredo, and P.R. Cetlin, Determination of Mechanical Anisotropy of Magnesium Processed by ECAP, J. Mater. Res. Technol., 2014, 3, p 331–337CrossRef F.S.J. Poggiali, C.L.P. Silva, P.H.R. Pereira, R.B. Figueiredo, and P.R. Cetlin, Determination of Mechanical Anisotropy of Magnesium Processed by ECAP, J. Mater. Res. Technol., 2014, 3, p 331–337CrossRef
23.
Zurück zum Zitat H. Chang, M.Y. Zheng, K. Wu, W.M. Gan, L.B. Tong, and H.G. Brokmeier, Microstructure and Mechanical Properties of the Accumulative Roll Bonded (ARBed) Pure Magnesium Sheet, Mater. Sci. Eng. A, 2010, 527, p 7176–7183CrossRef H. Chang, M.Y. Zheng, K. Wu, W.M. Gan, L.B. Tong, and H.G. Brokmeier, Microstructure and Mechanical Properties of the Accumulative Roll Bonded (ARBed) Pure Magnesium Sheet, Mater. Sci. Eng. A, 2010, 527, p 7176–7183CrossRef
24.
Zurück zum Zitat A.Y. Volkov and I.V. Kliukin, Improving the Mechanical Properties of Pure Magnesium Through Cold Hydrostatic Extrusion and Low-Temperature Annealing, Mater. Sci. Eng. A, 2015, 627, p 56–60CrossRef A.Y. Volkov and I.V. Kliukin, Improving the Mechanical Properties of Pure Magnesium Through Cold Hydrostatic Extrusion and Low-Temperature Annealing, Mater. Sci. Eng. A, 2015, 627, p 56–60CrossRef
25.
Zurück zum Zitat Y. Qiao, X. Wang, Z. Liu, and E. Wang, Microstructures, Textures and Mechanical Properties Evolution During Cold Drawing of Pure Mg, Microsc. Res., 2013, 1, p 8–15CrossRef Y. Qiao, X. Wang, Z. Liu, and E. Wang, Microstructures, Textures and Mechanical Properties Evolution During Cold Drawing of Pure Mg, Microsc. Res., 2013, 1, p 8–15CrossRef
26.
Zurück zum Zitat W.M. Gan, Y.D. Huang, R. Wang, G.F. Wang, A. Srinivasan, H.G. Brokmeier, N. Schell, K.U. Kainer, and N. Hort, Microstructures and Mechanical Properties of Pure Mg Processed by Rotary Swaging, Mater. Des., 2014, 63, p 83–88CrossRef W.M. Gan, Y.D. Huang, R. Wang, G.F. Wang, A. Srinivasan, H.G. Brokmeier, N. Schell, K.U. Kainer, and N. Hort, Microstructures and Mechanical Properties of Pure Mg Processed by Rotary Swaging, Mater. Des., 2014, 63, p 83–88CrossRef
27.
Zurück zum Zitat Y. Chino, K. Kimura, and M. Mabuchi, Twinning Behavior and Deformation Mechanisms of Extruded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2008, 486, p 481–488CrossRef Y. Chino, K. Kimura, and M. Mabuchi, Twinning Behavior and Deformation Mechanisms of Extruded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2008, 486, p 481–488CrossRef
28.
Zurück zum Zitat M. Jotoku, A. Yamamoto, and H. Tsubakino, Plastic Deformation of High Purity Magnesium at Room Temperature, J. Jpn. Inst. Met. Mater., 2006, 56, p 711–715 M. Jotoku, A. Yamamoto, and H. Tsubakino, Plastic Deformation of High Purity Magnesium at Room Temperature, J. Jpn. Inst. Met. Mater., 2006, 56, p 711–715
29.
Zurück zum Zitat C.-J. Li, H.-F. Sun, X.-W. Li, J.-L. Zhang, W.-B. Fang, and Z.-Y. Tan, Microstructure, Texture and Mechanical Properties of Mg-3.0Zn-0.2Ca Alloys Fabricated by Extrusion at Various Temperatures, J. Alloys Compd., 2015, 652, p 122–131CrossRef C.-J. Li, H.-F. Sun, X.-W. Li, J.-L. Zhang, W.-B. Fang, and Z.-Y. Tan, Microstructure, Texture and Mechanical Properties of Mg-3.0Zn-0.2Ca Alloys Fabricated by Extrusion at Various Temperatures, J. Alloys Compd., 2015, 652, p 122–131CrossRef
30.
Zurück zum Zitat H. Yu, S.H. Park, B.S. You, Y.M. Kim, H.S. Yu, and S.S. Park, Effects of Extrusion Speed on the Microstructure and Mechanical Properties of ZK60 Alloys with and Without 1 wt% Cerium Addition, Mater. Sci. Eng. A, 2013, 583, p 25–35CrossRef H. Yu, S.H. Park, B.S. You, Y.M. Kim, H.S. Yu, and S.S. Park, Effects of Extrusion Speed on the Microstructure and Mechanical Properties of ZK60 Alloys with and Without 1 wt% Cerium Addition, Mater. Sci. Eng. A, 2013, 583, p 25–35CrossRef
31.
Zurück zum Zitat M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef
32.
Zurück zum Zitat W.C. Zhang, Y. Yu, X.N. Zhang, W.Z. Chen, and E.D. Wang, Mechanical Anisotropy Improvement in Ultrafine-Grained ZK61 Magnesium Alloy Rods Fabricated by Cyclic Extrusion and Compression, Mater. Sci. Eng. A, 2014, 600, p 181–187CrossRef W.C. Zhang, Y. Yu, X.N. Zhang, W.Z. Chen, and E.D. Wang, Mechanical Anisotropy Improvement in Ultrafine-Grained ZK61 Magnesium Alloy Rods Fabricated by Cyclic Extrusion and Compression, Mater. Sci. Eng. A, 2014, 600, p 181–187CrossRef
33.
Zurück zum Zitat J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065CrossRef J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065CrossRef
34.
Zurück zum Zitat J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K, Mater. Trans., 2005, 44, p 445–451CrossRef J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama, Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K, Mater. Trans., 2005, 44, p 445–451CrossRef
Metadaten
Titel
Tension–Compression Asymmetry Improved by Cold Extrusion in Pure Magnesium
verfasst von
Cheng-jie Li
Shuang Cheng
Hong-fei Sun
Gui-chao Bai
Wen-bin Fang
Publikationsdatum
13.09.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3631-0

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Engineering and Performance 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.