Skip to main content
Erschienen in:
Buchtitelbild

2010 | OriginalPaper | Buchkapitel

1. Terahertz Radiation

verfasst von : Xi-Cheng Zhang, Jingzhou Xu

Erschienen in: Introduction to THz Wave Photonics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Various frequencies are spaced along the frequently used electromagnetic spectrum, including microwaves, infrared radiations, visible lights, and X-rays. Between the microwave and infrared frequencies lies terahertz (THz) radiation (Fig1.1). In the electromagnetic spectrum, radiation at 1 THz has a period of 1 ps, a wavelength of 300 μm, a wave number of 33 cm–1, a photon energy of 4.1 meV, and an equivalent temperature of 47.6 K. In the same way that visible light can create a photograph, radio waves can transmit sound, and X-rays can see shapes within the human body, terahertz waves (also called as T-rays) can create pictures and transmit information.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 2, 84–86 (1977).CrossRef C. H. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 2, 84–86 (1977).CrossRef
2.
Zurück zum Zitat C. H. Lee, and V. K. Mathur, “Picosecond photoconductivity and its applications,” IEEE J. Quantum Electon. 17, 10, 2098–2112 (1981).CrossRef C. H. Lee, and V. K. Mathur, “Picosecond photoconductivity and its applications,” IEEE J. Quantum Electon. 17, 10, 2098–2112 (1981).CrossRef
3.
Zurück zum Zitat G. A. Mourou, C. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch,” Appl. Phys. Lett. 39, 4, 295–365 (1981).CrossRef G. A. Mourou, C. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch,” Appl. Phys. Lett. 39, 4, 295–365 (1981).CrossRef
4.
Zurück zum Zitat J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. 19, 4, 664–667 (1983).CrossRef J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Subpicosecond electrical sampling,” IEEE J. Quantum Electron. 19, 4, 664–667 (1983).CrossRef
5.
Zurück zum Zitat C. Fattinger, and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 6, 490–494 (1989).CrossRef C. Fattinger, and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 6, 490–494 (1989).CrossRef
6.
Zurück zum Zitat C. Fattinger, and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 16, 1480–1482 (1988).CrossRef C. Fattinger, and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 16, 1480–1482 (1988).CrossRef
7.
Zurück zum Zitat M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 11, 446–448 (1962).CrossRef M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 11, 446–448 (1962).CrossRef
8.
Zurück zum Zitat K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 9, 320–323 (1971).CrossRef K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 9, 320–323 (1971).CrossRef
9.
Zurück zum Zitat T. Yajima and N. Takeuchi, “Spectral Properties and Tunability of Far-Infrared Differencerequency Radiation Produced by Picosecond Laser Pulses,” Jpn J. Appl. Phys. 10, 907–915 (1971). T. Yajima and N. Takeuchi, “Spectral Properties and Tunability of Far-Infrared Differencerequency Radiation Produced by Picosecond Laser Pulses,” Jpn J. Appl. Phys. 10, 907–915 (1971).
10.
Zurück zum Zitat X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 26, 3080–3082 (1992).CrossRef X.-C. Zhang, X. F. Ma, Y. Jin, T.-M. Lu, E. P. Boden, P. D. Phelps, K. R. Stewart, and C. P. Yakymyshyn, “Terahertz optical rectification from a nonlinear organic crystal,” Appl. Phys. Lett. 61, 26, 3080–3082 (1992).CrossRef
11.
Zurück zum Zitat X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 15, 2303–2306 (1992).CrossRef X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett. 69, 15, 2303–2306 (1992).CrossRef
12.
Zurück zum Zitat A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 11, 1324–1326 (1994).CrossRef A. Rice, Y. Jin, X. F. Ma, X.-C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from <110> zinc-blende crystals,” Appl. Phys. Lett. 64, 11, 1324–1326 (1994).CrossRef
13.
Zurück zum Zitat P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 9, 675–677 (2000).CrossRef P. Y. Han, M. Tani, F. Pan, and X.-C. Zhang, “Use of the organic crystal DAST for terahertz beam applications,” Opt. Lett. 25, 9, 675–677 (2000).CrossRef
14.
Zurück zum Zitat A. M. Sinyukov, and L. M. Hayden, “Generation and detection of terahertz radiation with multilayered electro-optic polymer films,” Opt. Lett. 27, 1, 55–57 (2002).CrossRef A. M. Sinyukov, and L. M. Hayden, “Generation and detection of terahertz radiation with multilayered electro-optic polymer films,” Opt. Lett. 27, 1, 55–57 (2002).CrossRef
15.
Zurück zum Zitat A. M. Sinyukov, M. R. Leahy, M. Hayden, M. Haller, J. Luo, A.K-Y. Jen, L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 24, 5827–5829 (2004).CrossRef A. M. Sinyukov, M. R. Leahy, M. Hayden, M. Haller, J. Luo, A.K-Y. Jen, L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 24, 5827–5829 (2004).CrossRef
16.
Zurück zum Zitat A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 11, 1516–1518 (1999).CrossRef A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory,” Appl. Phys. Lett. 74, 11, 1516–1518 (1999).CrossRef
17.
Zurück zum Zitat J. P. Hornak, “Imaging technology and systems section”, in The Encyclopedia of Imaging Science and Technology, vol. 2, pp. 1393–1404, Editor L. Hornak, John Wiley and Sons, New York (2002).CrossRef J. P. Hornak, “Imaging technology and systems section”, in The Encyclopedia of Imaging Science and Technology, vol. 2, pp. 1393–1404, Editor L. Hornak, John Wiley and Sons, New York (2002).CrossRef
18.
Zurück zum Zitat G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, T. B. Norris, “Power scalable compact THz system based on ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 17, 7909–7913 (2006).CrossRef G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, T. B. Norris, “Power scalable compact THz system based on ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 17, 7909–7913 (2006).CrossRef
19.
Zurück zum Zitat M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Horosumi, M. Yoshia, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 18, 3974–3976 (2004).CrossRef M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Horosumi, M. Yoshia, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses,” Appl. Phys. Lett. 85, 18, 3974–3976 (2004).CrossRef
20.
Zurück zum Zitat J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 21, 1161–1166 (2002). J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 21, 1161–1166 (2002).
21.
Zurück zum Zitat G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 10, 4439–4444 (2006).CrossRef G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, “High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser,” Opt. Express 14, 10, 4439–4444 (2006).CrossRef
22.
Zurück zum Zitat P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 2, 255–260 (1988).CrossRef P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 2, 255–260 (1988).CrossRef
23.
Zurück zum Zitat M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 4, 337–339 (1989).CrossRef M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 4, 337–339 (1989).CrossRef
24.
Zurück zum Zitat G. Zhao, R. N. Schouten, N. Van-der-Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 4, 1715–1719 (2002).CrossRef G. Zhao, R. N. Schouten, N. Van-der-Valk, W. T. Wenckebach, and P. C. M. Planken, “Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter,” Rev. Sci. Instrum. 73, 4, 1715–1719 (2002).CrossRef
25.
Zurück zum Zitat M. Tani, M. Nakajima, S. Kono, and K. Sakai, “Generation of ultra broadband terahertz radiation with a photoconductive emitter,” IEEE/LEOS Annu. Meeting Conf. Proc. Galsgow, UK, 2, 532–533 (2002). M. Tani, M. Nakajima, S. Kono, and K. Sakai, “Generation of ultra broadband terahertz radiation with a photoconductive emitter,” IEEE/LEOS Annu. Meeting Conf. Proc. Galsgow, UK, 2, 532–533 (2002).
26.
Zurück zum Zitat M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of THz radiation intensity from semi-insulating GaAs surfaces at high temperatures,” Appl. Phys. Lett. 81, 8, 1462–1464 (2002).CrossRef M. Nakajima, M. Takahashi, and M. Hangyo, “Strong enhancement of THz radiation intensity from semi-insulating GaAs surfaces at high temperatures,” Appl. Phys. Lett. 81, 8, 1462–1464 (2002).CrossRef
27.
Zurück zum Zitat H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Applications of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 19, 2903–2905 (1996).CrossRef H. M. Heiliger, M. Vosseburger, H. G. Roskos, H. Kurz, R. Hey, and K. Ploog, “Applications of liftoff low-temperature-grown GaAs on transparent substrates for THz signal generation,” Appl. Phys. Lett. 69, 19, 2903–2905 (1996).CrossRef
28.
Zurück zum Zitat M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 30, 7853–7859 (1997).CrossRef M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 30, 7853–7859 (1997).CrossRef
29.
Zurück zum Zitat C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 μm laser excitation,” Appl. Phys. Lett. 83, 20, 4113–4115 (2003).CrossRef C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 μm laser excitation,” Appl. Phys. Lett. 83, 20, 4113–4115 (2003).CrossRef
30.
Zurück zum Zitat M. Suzuki, and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).CrossRef M. Suzuki, and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett. 86, 051104 (2005).CrossRef
31.
Zurück zum Zitat P. Y. Han, and X.-C. Zhang, “Coherent, broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 21, 3049–3051 (1998).CrossRef P. Y. Han, and X.-C. Zhang, “Coherent, broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 21, 3049–3051 (1998).CrossRef
32.
Zurück zum Zitat R. Huber, A. Brodshelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 22, 3191–3193 (2000).CrossRef R. Huber, A. Brodshelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 22, 3191–3193 (2000).CrossRef
33.
Zurück zum Zitat K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28, 6, 471–473 (2003).CrossRef K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28, 6, 471–473 (2003).CrossRef
34.
Zurück zum Zitat X.-C. Zhang, and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtoseconds optics,” J. Appl. Phys. 71, 1, 326–338 (1992).CrossRef X.-C. Zhang, and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtoseconds optics,” J. Appl. Phys. 71, 1, 326–338 (1992).CrossRef
35.
Zurück zum Zitat T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurtz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 7, 4005–4014 (1996).CrossRef T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurtz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 7, 4005–4014 (1996).CrossRef
36.
Zurück zum Zitat C. A. Schumttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104, 4, 1759–1779 (2004).CrossRef C. A. Schumttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104, 4, 1759–1779 (2004).CrossRef
37.
Zurück zum Zitat E. Gornik, and R. Kersting, “Coherent THz emission in semiconductors”, Ultrafast Physical Processes in Semiconductors, vol. 67 of semiconductors and semimetals, Chapter 8, Academic Press, New York (2001). E. Gornik, and R. Kersting, “Coherent THz emission in semiconductors”, Ultrafast Physical Processes in Semiconductors, vol. 67 of semiconductors and semimetals, Chapter 8, Academic Press, New York (2001).
38.
Zurück zum Zitat A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductor,” Phys. Rev. B 61, 24, 16642–16652 (1999).CrossRef A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Femtosecond high-field transport in compound semiconductor,” Phys. Rev. B 61, 24, 16642–16652 (1999).CrossRef
39.
Zurück zum Zitat J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 1, 25–27 (1991).CrossRef J. T. Darrow, X.-C. Zhang, and D. H. Auston, “Power scaling of large-aperture photoconducting antennas,” Appl. Phys. Lett. 58, 1, 25–27 (1991).CrossRef
40.
Zurück zum Zitat J. T. Darrow, Z.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 6, 1607–1616 (1992).CrossRef J. T. Darrow, Z.-C. Zhang, D. H. Auston, and J. D. Morse, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 6, 1607–1616 (1992).CrossRef
41.
Zurück zum Zitat D. You, R. R. Jones, and P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).CrossRef D. You, R. R. Jones, and P. H. Bucksbaum, D. R. Dykaar, “Generation of high-power sub-single-cycle 500-fs electromagnetic pulses,” Opt. Lett. 18, 290–292 (1993).CrossRef
42.
Zurück zum Zitat P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer “Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons,” Phys. Rev. Lett. 69, 26, 3800–3803 (1992).CrossRef P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer “Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons,” Phys. Rev. Lett. 69, 26, 3800–3803 (1992).CrossRef
43.
Zurück zum Zitat H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kohler, “Coherent Submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 14, 2216–2219 (1992).CrossRef H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. Miller, A. M. Fox, S. Schmitt-Rink, and K. Kohler, “Coherent Submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 14, 2216–2219 (1992).CrossRef
44.
Zurück zum Zitat N. Sekine, K. Yamanaka, K. Hirakawa, M. Vosseburger, P. Haring-Bolivar, and H. Kurz, “Observation of terahertz radiation from higher-order two-dimensional Plasmon modes in GaAs/AlGaAs single quantum wells,” Appl. Phys. Lett. 74, 7, 1006–1008 (1999).CrossRef N. Sekine, K. Yamanaka, K. Hirakawa, M. Vosseburger, P. Haring-Bolivar, and H. Kurz, “Observation of terahertz radiation from higher-order two-dimensional Plasmon modes in GaAs/AlGaAs single quantum wells,” Appl. Phys. Lett. 74, 7, 1006–1008 (1999).CrossRef
45.
Zurück zum Zitat X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auton, M. T. Schmidt, P. Tham, E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 22, 2228–2230 (1990).CrossRef X.-C. Zhang, J. T. Darrow, B. B. Hu, D. H. Auton, M. T. Schmidt, P. Tham, E. S. Yang, “Optically induced electromagnetic radiation from semiconductor surfaces,” Appl. Phys. Lett. 56, 22, 2228–2230 (1990).CrossRef
46.
Zurück zum Zitat Y. Shimada, K. Hirakawa, and S.-W. Lee, “Time-resolved terahertz emission spectroscopy of wide miniband GaAs/AlGaAs superlattices,” Appl. Phys. Lett. 81, 9, 1642–1644 (2002).CrossRef Y. Shimada, K. Hirakawa, and S.-W. Lee, “Time-resolved terahertz emission spectroscopy of wide miniband GaAs/AlGaAs superlattices,” Appl. Phys. Lett. 81, 9, 1642–1644 (2002).CrossRef
47.
Zurück zum Zitat M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-δ thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 14, 2122–2124 (1996).CrossRef M. Hangyo, S. Tomozawa, Y. Murakami, M. Tonouchi, M. Tani, Z. Wang, K. Sakai, and S. Nakashima, “Terahertz radiation from superconducting YBa2Cu3O7-δ thin films excited by femtosecond optical pulses,” Appl. Phys. Lett. 69, 14, 2122–2124 (1996).CrossRef
48.
Zurück zum Zitat C. Jaekel, H. G. Roskos, and H. Kurz, “Emission of picosecond electromagnetic pulses from optically excited superconducting bridges,” Phys. Rev. B 54, 10, R6889–R6892 (1996).CrossRef C. Jaekel, H. G. Roskos, and H. Kurz, “Emission of picosecond electromagnetic pulses from optically excited superconducting bridges,” Phys. Rev. B 54, 10, R6889–R6892 (1996).CrossRef
49.
Zurück zum Zitat H. Wald, C. Steigmeier, P. Seidel, S. Nashima, M. Tonouchi, and M. Hangyo, “Comparison of the electromagnetic pulse emission from YBa2Cu3O7-δ and Y0.7Pr0.3Ba2Cu3O7 excited by femtosecond laser pulses,” Physica C 341, 3, 1899–1900 (2000).CrossRef H. Wald, C. Steigmeier, P. Seidel, S. Nashima, M. Tonouchi, and M. Hangyo, “Comparison of the electromagnetic pulse emission from YBa2Cu3O7-δ and Y0.7Pr0.3Ba2Cu3O7 excited by femtosecond laser pulses,” Physica C 341, 3, 1899–1900 (2000).CrossRef
50.
Zurück zum Zitat M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Measuring intramolecular charge transfer via coherent generation of THz radiation,” J. Phys. Chem. A 106, 6, 878–883 (2002).CrossRef M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Measuring intramolecular charge transfer via coherent generation of THz radiation,” J. Phys. Chem. A 106, 6, 878–883 (2002).CrossRef
51.
Zurück zum Zitat N. Kida, and M. Tomouchi, “Terahertz radiation from magnetoresistive Pr0.3Ca0.3MnO3 thin films,” Appl. Phys. Lett. 78, 26, 4115–4117 (2001).CrossRef N. Kida, and M. Tomouchi, “Terahertz radiation from magnetoresistive Pr0.3Ca0.3MnO3 thin films,” Appl. Phys. Lett. 78, 26, 4115–4117 (2001).CrossRef
52.
Zurück zum Zitat N. Kida, and M. Tonouchi, “Reversible and bistable terahertz radiation from magnetoresistive Pr0.3Ca0.3MnO3 thin films,” Appl. Phys. Lett. 82, 20, 3412–3414 (2003).CrossRef N. Kida, and M. Tonouchi, “Reversible and bistable terahertz radiation from magnetoresistive Pr0.3Ca0.3MnO3 thin films,” Appl. Phys. Lett. 82, 20, 3412–3414 (2003).CrossRef
53.
Zurück zum Zitat G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 6912, 153–156 (2002).CrossRef G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 6912, 153–156 (2002).CrossRef
54.
Zurück zum Zitat G. L. Carr, M. C. Marting, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “Very high power THz radiation sources,” J. Bio. Phys. 29, 2-3, 319–325 (2003).CrossRef G. L. Carr, M. C. Marting, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “Very high power THz radiation sources,” J. Bio. Phys. 29, 2-3, 319–325 (2003).CrossRef
55.
Zurück zum Zitat I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, and A. F. G. van-der-Meer, “Single-shot electron-beam bunch length measurements,” Phys. Rev. Lett. 88, 12, 124801 (2002).CrossRef I. Wilke, A. M. MacLeod, W. A. Gillespie, G. Berden, G. M. H. Knippels, and A. F. G. van-der-Meer, “Single-shot electron-beam bunch length measurements,” Phys. Rev. Lett. 88, 12, 124801 (2002).CrossRef
56.
Zurück zum Zitat X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96, 7, 075005 (2006).CrossRef X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96, 7, 075005 (2006).CrossRef
57.
Zurück zum Zitat D. H. Auston, and P.R Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 7, 631–633 (1983).CrossRef D. H. Auston, and P.R Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett. 43, 7, 631–633 (1983).CrossRef
58.
Zurück zum Zitat S. Kono, M. Tani, and K. Sakai, “Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling,” Appl. Phys. Lett. 79, 7, 898–900 (2001).CrossRef S. Kono, M. Tani, and K. Sakai, “Ultrabroadband photoconductive detection: Comparison with free-space electro-optic sampling,” Appl. Phys. Lett. 79, 7, 898–900 (2001).CrossRef
59.
Zurück zum Zitat S. Kono, M. Tani, and K. Sakai, “Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna,” IEE Proc. Optoelectron. 149, 3, 105–109 (2002).CrossRef S. Kono, M. Tani, and K. Sakai, “Coherent detection of mid-infrared radiation up to 60 THz with an LT-GaAs photoconductive antenna,” IEE Proc. Optoelectron. 149, 3, 105–109 (2002).CrossRef
60.
Zurück zum Zitat Q. Wu, and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 24, 3523–3525 (1995).CrossRef Q. Wu, and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 24, 3523–3525 (1995).CrossRef
61.
Zurück zum Zitat A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 16, 2321–2323 (1996).CrossRef A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 16, 2321–2323 (1996).CrossRef
62.
Zurück zum Zitat P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. E 53, 4, 3052–3054 (1996).CrossRef P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. E 53, 4, 3052–3054 (1996).CrossRef
63.
Zurück zum Zitat Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 14, 1784–1786 (1997).CrossRef Q. Wu, and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 14, 1784–1786 (1997).CrossRef
64.
Zurück zum Zitat M. Vossebrger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, “Propagation effects in electro-optic sampling of terahertz pulses in GaAs,” Appl. Opt. 37, 15, 3368–3371 (1998).CrossRef M. Vossebrger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, “Propagation effects in electro-optic sampling of terahertz pulses in GaAs,” Appl. Opt. 37, 15, 3368–3371 (1998).CrossRef
65.
Zurück zum Zitat Q. Wu, and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 12, 1604–1606 (1996).CrossRef Q. Wu, and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 12, 1604–1606 (1996).CrossRef
66.
Zurück zum Zitat A. Brodschelm, F. Tauser, R. Huber, J. Y. Sohn, and A. Leitenstorfer, “Amplitude and phase resolved detection of tunable femtosecond pulses with frequency components beyond 100 THz,” Springer Ser. Chem. Phys. 66, 215–217 (2000). A. Brodschelm, F. Tauser, R. Huber, J. Y. Sohn, and A. Leitenstorfer, “Amplitude and phase resolved detection of tunable femtosecond pulses with frequency components beyond 100 THz,” Springer Ser. Chem. Phys. 66, 215–217 (2000).
67.
Zurück zum Zitat R. S. Robert, An Introduction to Guided Waves and Microwave Circuits, 1st edn., Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-481052-X (1993). R. S. Robert, An Introduction to Guided Waves and Microwave Circuits, 1st edn., Prentice-Hall, Englewood Cliffs, NJ, ISBN 0-13-481052-X (1993).
68.
Zurück zum Zitat F. Maiwald, S. Martin, J. Bruston, A. Maestrini, T. Crawford, and P. H. Siegel, “2.7 THz waveguide tripler using monolithic membrane diodes,” IEEE MTT-S Int. Microwave Symp. Digest 3, 1637–1640 (2001). F. Maiwald, S. Martin, J. Bruston, A. Maestrini, T. Crawford, and P. H. Siegel, “2.7 THz waveguide tripler using monolithic membrane diodes,” IEEE MTT-S Int. Microwave Symp. Digest 3, 1637–1640 (2001).
69.
Zurück zum Zitat V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 4, 1875–1881 (2002).CrossRef V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 4, 1875–1881 (2002).CrossRef
70.
Zurück zum Zitat A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43, 30, 5637–5646 (2004).CrossRef A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43, 30, 5637–5646 (2004).CrossRef
71.
Zurück zum Zitat E. Mueller, “Submillimeter wave lasers”, Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 20, pp. 597–615, Editor J. G. Webster, John Wiley & Sons Inc, New York (1999). E. Mueller, “Submillimeter wave lasers”, Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 20, pp. 597–615, Editor J. G. Webster, John Wiley & Sons Inc, New York (1999).
72.
Zurück zum Zitat R. Densing, A. Erstling, M. Gogolewski, H. P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far-infrared laser operation with mesh couplers,” Infrared Phys. 33, 3, 219–226 (1992).CrossRef R. Densing, A. Erstling, M. Gogolewski, H. P. Gemund, G. Lundershausen, and A. Gatesman, “Effective far-infrared laser operation with mesh couplers,” Infrared Phys. 33, 3, 219–226 (1992).CrossRef
73.
Zurück zum Zitat G. P. Williams, “Far-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser,” Rev. Sci. Instrum. 73, 3, 1461–1463 (2002).CrossRef G. P. Williams, “Far-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser,” Rev. Sci. Instrum. 73, 3, 1461–1463 (2002).CrossRef
74.
Zurück zum Zitat J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 5158, 553–556 (1994).CrossRef J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 5158, 553–556 (1994).CrossRef
75.
Zurück zum Zitat S. Komiyama, “Far-infrared emission from population-inverted hot-carrier system in p-Ge,” Phys. Rev. Lett. 48, 4, 271–274 (1982).CrossRef S. Komiyama, “Far-infrared emission from population-inverted hot-carrier system in p-Ge,” Phys. Rev. Lett. 48, 4, 271–274 (1982).CrossRef
76.
Zurück zum Zitat Y. P.Gousev, I. V. Altukhov, K. A. Korolev, V. P.Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblydov, I. N. Yassievich, and K. A. Chao, “Widely tunable continuous wave THz laser,” Appl. Phys. Lett. 75, 6, 757–759 (1999).CrossRef Y. P.Gousev, I. V. Altukhov, K. A. Korolev, V. P.Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblydov, I. N. Yassievich, and K. A. Chao, “Widely tunable continuous wave THz laser,” Appl. Phys. Lett. 75, 6, 757–759 (1999).CrossRef
77.
Zurück zum Zitat R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 6885, 156–159 (2002).CrossRef R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 6885, 156–159 (2002).CrossRef
78.
Zurück zum Zitat L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2005).CrossRef L. Mahler, A. Tredicucci, R. Kohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, “High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings,” Appl. Phys. Lett. 87, 181101 (2005).CrossRef
79.
Zurück zum Zitat A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3, 41–45 (2008).CrossRef A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3, 41–45 (2008).CrossRef
80.
Zurück zum Zitat F. Zernike Jr. and P. R. Berman, “Generation of Far Infrared as a Difference Frequency,” Phys. Rev. Lett. 15, 999–1001(1965). F. Zernike Jr. and P. R. Berman, “Generation of Far Infrared as a Difference Frequency,” Phys. Rev. Lett. 15, 999–1001(1965).
81.
Zurück zum Zitat J. R. Morris, and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 3, 1143–1156 (1977).CrossRef J. R. Morris, and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 3, 1143–1156 (1977).CrossRef
82.
Zurück zum Zitat E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 3, 285–287 (1995).CrossRef E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs,” Appl. Phys. Lett. 66, 3, 285–287 (1995).CrossRef
83.
Zurück zum Zitat K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 18, 2483–2485 (1996).CrossRef K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 18, 2483–2485 (1996).CrossRef
84.
Zurück zum Zitat J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 4, 202–204 (1999).CrossRef J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Enhancement of THz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24, 4, 202–204 (1999).CrossRef
85.
Zurück zum Zitat K. Imai, and K. Kawase, “A frequency-agile terahertz-wave parametric oscillator,” Opt. Express 8, 13, 699–704 (2001).CrossRef K. Imai, and K. Kawase, “A frequency-agile terahertz-wave parametric oscillator,” Opt. Express 8, 13, 699–704 (2001).CrossRef
86.
Zurück zum Zitat K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78, 19, 2819–2821 (2001).CrossRef K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78, 19, 2819–2821 (2001).CrossRef
87.
Zurück zum Zitat C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76, 24, 3510–3512 (2000).CrossRef C. Kadow, A. W. Jackson, A. C. Gossard, S. Matsuura, and G. A. Blake, “Self-assembled ErAs islands in GaAs for optical-heterodyne THz generation,” Appl. Phys. Lett. 76, 24, 3510–3512 (2000).CrossRef
88.
Zurück zum Zitat E. L. Dereniak, and G. D. Boreman, Infrared Detectors and Systems, John Wiley & Sons Inc, New York, ISBN-0471122092, (1996). E. L. Dereniak, and G. D. Boreman, Infrared Detectors and Systems, John Wiley & Sons Inc, New York, ISBN-0471122092, (1996).
89.
Zurück zum Zitat S. Komiyama, O. Astaflev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).CrossRef S. Komiyama, O. Astaflev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range,” Nature 403, 405–407 (2000).CrossRef
90.
Zurück zum Zitat M. R. Stone, M. Naftaly, R. E. Miles, and J. R. Fletcher, D. P. Steenson, “Electrical and radiation characteristics of semi-large photoconductive terahertz emitters,” IEEE Trans. Microwave Theory Tech. 52, 10, 2420–2429 (2004).CrossRef M. R. Stone, M. Naftaly, R. E. Miles, and J. R. Fletcher, D. P. Steenson, “Electrical and radiation characteristics of semi-large photoconductive terahertz emitters,” IEEE Trans. Microwave Theory Tech. 52, 10, 2420–2429 (2004).CrossRef
91.
Zurück zum Zitat G. J. Dolan, T. G. Phillips, and D. P. Woody, “Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions,” Appl. Phys. Lett. 34, 5, 347–349 (1979).CrossRef G. J. Dolan, T. G. Phillips, and D. P. Woody, “Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions,” Appl. Phys. Lett. 34, 5, 347–349 (1979).CrossRef
92.
Zurück zum Zitat W. Knap, Y. Deng, S. Rumyantsev, J. Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel, “Resonant detection of subterahertz radiation by plasma waves in the submicron field effect transistor,” Appl. Phys. Lett. 80, 18, 3433–3435 (2002).CrossRef W. Knap, Y. Deng, S. Rumyantsev, J. Q. Lu, M. S. Shur, C. A. Saylor, and L. C. Brunel, “Resonant detection of subterahertz radiation by plasma waves in the submicron field effect transistor,” Appl. Phys. Lett. 80, 18, 3433–3435 (2002).CrossRef
93.
Zurück zum Zitat M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R.P. Smith, P.H. Siegel, “A 2.5 THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 4, 733–739 (2000).CrossRef M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R.P. Smith, P.H. Siegel, “A 2.5 THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 4, 733–739 (2000).CrossRef
94.
Zurück zum Zitat D. Grischkowsky, S. R. Keiding, M. P. van-Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Society Am. B 7, 10, 2006–2015 (1990).CrossRef D. Grischkowsky, S. R. Keiding, M. P. van-Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Society Am. B 7, 10, 2006–2015 (1990).CrossRef
95.
Zurück zum Zitat D. Grischkowsky, “An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy,” Opt. Photonics News 3, 22 (1992).CrossRef D. Grischkowsky, “An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy,” Opt. Photonics News 3, 22 (1992).CrossRef
96.
Zurück zum Zitat J. Xu, and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 17 2082–2084 (2004).CrossRef J. Xu, and X.-C. Zhang, “Circular involute stage,” Opt. Lett. 29, 17 2082–2084 (2004).CrossRef
97.
Zurück zum Zitat J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40, 19, 1218–1219 (2004).CrossRef J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40, 19, 1218–1219 (2004).CrossRef
98.
Zurück zum Zitat Z. Jiang, and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 16, 1945–1947 (1998).CrossRef Z. Jiang, and X.-C. Zhang, “Electro-optic measurement of THz field pulses with a chirped optical beam,” Appl. Phys. Lett. 72, 16, 1945–1947 (1998).CrossRef
99.
Zurück zum Zitat Z. Jiang, and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 14, 1114–1116 (1998).CrossRef Z. Jiang, and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging,” Opt. Lett. 23, 14, 1114–1116 (1998).CrossRef
100.
Zurück zum Zitat A. Galvanauskas, J. A. Tellefsen, A. Krotkus, M. Oberg, and B. Borberg, “Real-time picosecond electro-optic oscilloscope technique using a tunable semiconductor laser,” Appl. Phys. Lett. 60, 2, 145–147 (1992).CrossRef A. Galvanauskas, J. A. Tellefsen, A. Krotkus, M. Oberg, and B. Borberg, “Real-time picosecond electro-optic oscilloscope technique using a tunable semiconductor laser,” Appl. Phys. Lett. 60, 2, 145–147 (1992).CrossRef
101.
Zurück zum Zitat M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).CrossRef M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).CrossRef
102.
Zurück zum Zitat Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, X.-C. Zhang, D. Schauki, M. J. Fitch, and R. Osiander, "Spectroscopic characterization of explosives in the far-infrared region", Proc. SPIE 5411, 1–8 (2004).CrossRef Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, X.-C. Zhang, D. Schauki, M. J. Fitch, and R. Osiander, "Spectroscopic characterization of explosives in the far-infrared region", Proc. SPIE 5411, 1–8 (2004).CrossRef
103.
Zurück zum Zitat K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, 3B, L414–417 (2004).CrossRef K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, and Y. Minami, “Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 43, 3B, L414–417 (2004).CrossRef
104.
Zurück zum Zitat Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).CrossRef Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005).CrossRef
106.
Zurück zum Zitat H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter and microwave spectral line catalog,” J. Quant. Spectrosc. Rad. Transfer 60, 5, 883–890 (1998).CrossRef H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter and microwave spectral line catalog,” J. Quant. Spectrosc. Rad. Transfer 60, 5, 883–890 (1998).CrossRef
107.
Zurück zum Zitat R. L. Poynter, and H. M. Pickett, “Submillimeter, millimeter and microwave spectral line catalog,” Appl. Opt. 24, 14, 2235–2240 (1985).CrossRef R. L. Poynter, and H. M. Pickett, “Submillimeter, millimeter and microwave spectral line catalog,” Appl. Opt. 24, 14, 2235–2240 (1985).CrossRef
108.
Zurück zum Zitat P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 3, 910–928 (2002).CrossRef P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 3, 910–928 (2002).CrossRef
109.
Zurück zum Zitat C. M. Mann, P. de Maagt, G. McBride, F. van-de-Water, D. Castiglione, A. McCalden, L. Deias, J. O’Neill, A. Laisne, J. T. Vallinas, I. Ederra, and D. Haskett, “Micro-fabrication of 3D terahertz circuitry,” IEEE MTT-S Int. Microwave Symp. Digest 2, 739 (2003). C. M. Mann, P. de Maagt, G. McBride, F. van-de-Water, D. Castiglione, A. McCalden, L. Deias, J. O’Neill, A. Laisne, J. T. Vallinas, I. Ederra, and D. Haskett, “Micro-fabrication of 3D terahertz circuitry,” IEEE MTT-S Int. Microwave Symp. Digest 2, 739 (2003).
110.
Zurück zum Zitat N. I. Malykh, A. G. Nagornyi, and E. S. Yampolskii, “Submillimeter-wave imagery,” Instrum. Exp. Tech. 18, 1, 182–184 (1975). N. I. Malykh, A. G. Nagornyi, and E. S. Yampolskii, “Submillimeter-wave imagery,” Instrum. Exp. Tech. 18, 1, 182–184 (1975).
111.
Zurück zum Zitat T. S. Hartwick, D. T. Hodges, D. H. Barker, and F. B. Foote, “Far-infrared imagery,” Appl. Opt. 15, 8, 1919–1922 (1976).CrossRef T. S. Hartwick, D. T. Hodges, D. H. Barker, and F. B. Foote, “Far-infrared imagery,” Appl. Opt. 15, 8, 1919–1922 (1976).CrossRef
112.
Zurück zum Zitat A. A. Lash, and D. N. Yundev, “Visualization of submillimeter laser radiation with a pyroelectric television camera,” Instrum. Exp. Tech. 27, 3, 736–739 (1984). A. A. Lash, and D. N. Yundev, “Visualization of submillimeter laser radiation with a pyroelectric television camera,” Instrum. Exp. Tech. 27, 3, 736–739 (1984).
113.
Zurück zum Zitat B. B. Hu, and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 16, 1716–1718 (1995).CrossRef B. B. Hu, and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 16, 1716–1718 (1995).CrossRef
114.
Zurück zum Zitat D. M. Mittleman, R. H. Jacobson, and M. C. Nuss, “T-ray imaging,” IEEE J. Select. Topics Quant. Electro. 2, 3, 679–692 (1996).CrossRef D. M. Mittleman, R. H. Jacobson, and M. C. Nuss, “T-ray imaging,” IEEE J. Select. Topics Quant. Electro. 2, 3, 679–692 (1996).CrossRef
115.
Zurück zum Zitat D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 6, 1085–1094 (1999).CrossRef D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 6, 1085–1094 (1999).CrossRef
116.
Zurück zum Zitat S. Hadjiloucas, L. S. Haratzas, and J. W. Bowen, “Measurement of leaf-water content using terahertz radiation,” IEEE Trans. Microwave Theory Tech. 47, 2, 142–149 (1999).CrossRef S. Hadjiloucas, L. S. Haratzas, and J. W. Bowen, “Measurement of leaf-water content using terahertz radiation,” IEEE Trans. Microwave Theory Tech. 47, 2, 142–149 (1999).CrossRef
117.
Zurück zum Zitat M. Knott, “See-through teeth,” New Scientist 162, 2192, 22 (1999). M. Knott, “See-through teeth,” New Scientist 162, 2192, 22 (1999).
Zurück zum Zitat 118. R. M. Woodward, B. Cole, V. P. Wallace, D. D. Arnone, R. Pye, E. H. Linfield, M. Pepper, and A. G. Davies, “Terahertz pulse imaging of in-vitro basal cell carcinoma samples,” Proc. Conf. Lasers Electro-Opt., Baltimore, pp. 329–330 (2001). 118. R. M. Woodward, B. Cole, V. P. Wallace, D. D. Arnone, R. Pye, E. H. Linfield, M. Pepper, and A. G. Davies, “Terahertz pulse imaging of in-vitro basal cell carcinoma samples,” Proc. Conf. Lasers Electro-Opt., Baltimore, pp. 329–330 (2001).
119.
Zurück zum Zitat W. S. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, 9, R101–R112 (2001).CrossRef W. S. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction between terahertz radiation and biological tissue,” Phys. Med. Biol. 46, 9, R101–R112 (2001).CrossRef
120.
Zurück zum Zitat G. C. Walker, E. Berry, N. N. Zinov’ev, A. J. Fitzgerald, R. E. Miles, J. Chamberlain, and M. A. Smith, “Terahertz imaging and international safety guidelines,” Proc. SPIE Medical Imaging 4682, 683–690 (2002). G. C. Walker, E. Berry, N. N. Zinov’ev, A. J. Fitzgerald, R. E. Miles, J. Chamberlain, and M. A. Smith, “Terahertz imaging and international safety guidelines,” Proc. SPIE Medical Imaging 4682, 683–690 (2002).
121.
Zurück zum Zitat J. Xu, and G. Cho, “A real-time terahertz wave imager,” CLEO, CThN2, San Jose, California (2008). J. Xu, and G. Cho, “A real-time terahertz wave imager,” CLEO, CThN2, San Jose, California (2008).
122.
Zurück zum Zitat Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 8, 1026–1028 (1996).CrossRef Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two dimensional electro-optic imaging of terahertz beams,” Appl. Phys. Lett. 69, 8, 1026–1028 (1996).CrossRef
123.
Zurück zum Zitat A. W. M. Lee, and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal plane array,” Opt. Lett. 30, 19, 2563–2565 (2005).CrossRef A. W. M. Lee, and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal plane array,” Opt. Lett. 30, 19, 2563–2565 (2005).CrossRef
124.
Zurück zum Zitat V. Minin, and O. V. Minin, “System of microwave radio-vision of three-dimensional objects in real time,” Proc. SPIE-Int. Soc. Opt. Eng. 4129, 616 (2000). V. Minin, and O. V. Minin, “System of microwave radio-vision of three-dimensional objects in real time,” Proc. SPIE-Int. Soc. Opt. Eng. 4129, 616 (2000).
125.
Zurück zum Zitat E. D. Walsby, S. Wang, B. Ferguson, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, D. R. S. Cumming, and X.-C. Zhang, “Investigation of a THz Fresnel lenses”, Chemical Physics, Ultrafast Phenomena XIII, p. 292, Editors R. D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner, Springer, New York (2002). E. D. Walsby, S. Wang, B. Ferguson, J. Xu, T. Yuan, R. Blaikie, S. M. Durbin, D. R. S. Cumming, and X.-C. Zhang, “Investigation of a THz Fresnel lenses”, Chemical Physics, Ultrafast Phenomena XIII, p. 292, Editors R. D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner, Springer, New York (2002).
126.
Zurück zum Zitat S. H. Wang, and X.-C. Zhang, “Terahertz tomographic imaging with a Fresnel lens,” Optics & Photonics News Special December Issue Optics in 2002, 59 (2002). S. H. Wang, and X.-C. Zhang, “Terahertz tomographic imaging with a Fresnel lens,” Optics & Photonics News Special December Issue Optics in 2002, 59 (2002).
127.
Zurück zum Zitat T. S. Hartwick, “Far-infrared imaging techniques for law enforcement applications,” Opt. Sec. Law Enforcement (SPIE) 108, 139 (1977). T. S. Hartwick, “Far-infrared imaging techniques for law enforcement applications,” Opt. Sec. Law Enforcement (SPIE) 108, 139 (1977).
128.
Zurück zum Zitat NASA’s Implementation Plans for Space Shuttle Return to Flight and Beyond, vol. 1, rev. 2, April 26 (2004). NASA’s Implementation Plans for Space Shuttle Return to Flight and Beyond, vol. 1, rev. 2, April 26 (2004).
129.
Zurück zum Zitat J. Xu, H. Zhong, T. Yuan, X. Xu, X.-C. Zhang, R. Reightler, and E. Madras, “T-rays identify defects in insulating materials,” CLEO, CMB2, San Jose, California (2004). J. Xu, H. Zhong, T. Yuan, X. Xu, X.-C. Zhang, R. Reightler, and E. Madras, “T-rays identify defects in insulating materials,” CLEO, CMB2, San Jose, California (2004).
130.
Zurück zum Zitat N. Karpowicz, H. Zhong, C. Zhang, K. Lin, J. S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave sub-Terahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).CrossRef N. Karpowicz, H. Zhong, C. Zhang, K. Lin, J. S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave sub-Terahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).CrossRef
131.
Zurück zum Zitat J. Jahns, and S. J. Walker, “Two-dimensional array of diffractive micro-lenses fabricated by thin film deposition,” Appl. Opt. 29, 7, 931–936 (1990).CrossRef J. Jahns, and S. J. Walker, “Two-dimensional array of diffractive micro-lenses fabricated by thin film deposition,” Appl. Opt. 29, 7, 931–936 (1990).CrossRef
132.
Zurück zum Zitat S. H. Wang, and X.-C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82, 12, 1821–1823 (2003).CrossRef S. H. Wang, and X.-C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82, 12, 1821–1823 (2003).CrossRef
Metadaten
Titel
Terahertz Radiation
verfasst von
Xi-Cheng Zhang
Jingzhou Xu
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0978-7_1

Neuer Inhalt