Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.05.2018 | Original Article | Ausgabe 9/2018

International Journal of Computer Assisted Radiology and Surgery 9/2018

TernaryNet: faster deep model inference without GPUs for medical 3D segmentation using sparse and binary convolutions

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 9/2018
Autoren:
Mattias P. Heinrich, Max Blendowski, Ozan Oktay
Wichtige Hinweise
This work was in part supported by the German Research Foundation (DFG) under Grant Number 320997906.

Abstract

Purpose

Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high-quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image-guided interventions and diagnostic (point-of-care) support using mobile devices without graphics processing units (GPU).

Methods

We propose a new scheme that approximates both trainable weights and neural activations in deep networks by ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions. Our solution enables the removal of the expensive floating-point matrix multiplications throughout any convolutional neural network and replaces them by energy- and time-preserving binary operators and population counts.

Results

We evaluate our approach for the segmentation of the pancreas in CT. Here, our ternary approximation within a fully convolutional network leads to more than 90% memory reductions and high accuracy (without any post-processing) with a Dice overlap of 71.0% that comes close to the one obtained when using networks with high-precision weights and activations. We further provide a concept for sub-second inference without GPUs and demonstrate significant improvements in comparison with binary quantisation and without our proposed ternary hyperbolic tangent continuation.

Conclusions

We present a key enabling technique for highly efficient DCNN inference without GPUs that will help to bring the advances of deep learning to practical clinical applications. It has also great promise for improving accuracies in large-scale medical data retrieval.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2018

International Journal of Computer Assisted Radiology and Surgery 9/2018 Zur Ausgabe

Premium Partner

    Bildnachweise