Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.01.2015 | Quantitative Methods Special Section | Ausgabe 1/2015

Quality of Life Research 1/2015

Testing the measurement invariance of the EORTC QLQ-C30 across primary cancer sites using multi-group confirmatory factor analysis

Zeitschrift:
Quality of Life Research > Ausgabe 1/2015
Autoren:
D. S. J. Costa, N. K. Aaronson, P. M. Fayers, J. F. Pallant, G. Velikova, M. T. King

Abstract

Purpose

The EORTC Quality of Life Questionnaire is a widely used cancer-specific quality of life instrument comprising a core set of 30 items (QLQ-C30) supplemented by cancer site-specific modules. The purpose of this paper was to examine the extent to which the conventional multi-item domain structure of the QLQ-C30 holds across patients with seven different primary cancer sites.

Methods

Multi-group confirmatory factor analysis was used to test whether a measurement model of the QLQ-C30 was invariant across cancer sites. Configural (same patterns of factor loadings), metric (equivalence of factor loadings) and scalar (equivalence of thresholds) invariance amongst the cancer site groups were assessed (N = 1,906) by comparing the fit of a model with these parameters freely estimated to a model where estimates were constrained to be equal for the corresponding items in each group.

Results

All groups exhibited good model fit except for the prostate group, which was excluded. Only 1 of 576 parameters was found to differ between primary sites: specifically, the first threshold of Item 1 in the breast cancer group exhibited non-invariance. In a post hoc analysis, several instances of non-invariance by treatment status (baseline, on-treatment, off-treatment) were observed.

Conclusions

Given only one instance of non-invariance between cancer sites, there is a reason to be confident in the validity of conclusions drawn when comparing QLQ-C30 domain scores between different sites and when interpreting the scores of heterogeneous samples, although future research should assess the potential impact of confounding variables such as treatment and gender.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Quality of Life Research 1/2015Zur Ausgabe

Premium Partner

Stellmach & BröckersBBL | Bernsau BrockdorffMaturus Finance GmbHPlutahww hermann wienberg wilhelm

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Künstliche Intelligenz und der Faktor Arbeit - Implikationen für Unternehmen und Wirtschaftspolitik

Künstliche Intelligenz und ihre Auswirkung auf den Faktor Arbeit ist zum Modethema in der wirtschaftswissenschaftlichen Politikberatung avanciert. Studien, die alarmistisch die baldige Verdrängung eines Großteils konventioneller Jobprofile beschwören, leiden jedoch unter fragwürdiger Datenqualität und Methodik. Die Unternehmensperspektive zeigt, dass der Wandel der Arbeitswelt durch künstliche Intelligenz weitaus langsamer und weniger disruptiv ablaufen wird. Jetzt gratis downloaden!

Bildnachweise