Skip to main content
Erschienen in: Cellulose 5/2014

01.10.2014 | Original Paper

Textile grade long natural cellulose fibers from bark of cotton stalks using steam explosion as a pretreatment

verfasst von: Zhen Dong, Xiuliang Hou, Fangfang Sun, Li Zhang, Yiqi Yang

Erschienen in: Cellulose | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Textile grade long natural cellulose fibers with fineness of 27 dtex have been extracted from bark of cotton stalks by a combination of steam explosion, potassium hydroxide and peroxide treatments (explosion–KOH–H2O2). It was reported that natural cellulose fibers from bark of cotton stalks had significantly better mechanical properties than those from other lignocellulosic agricultural byproducts such as rice and wheat straws. Fibers from bark of cotton stalks were used to reinforce thermoplastic composites but could not be spun into yarns for textile applications due to their high fineness value (around 50 dtex) and/or low aspect ratio (around 660). In this research, barks of cotton stalks were treated using three methods, including steam explosion, a combination of steam explosion and potassium hydroxide treatments (explosion–KOH) and explosion–KOH–H2O2. The morphology, composition, carding yield, crystalline structures and tensile properties of three different cotton stalk fibers were analyzed. Results showed that cotton stalk fibers extracted by explosion–KOH–H2O2 had the lowest fineness value of 27 dtex and moderate aspect ratio of 1,150 in three kinds of fibers. The fibers also had most clean and smooth surfaces, highest carding yield of 68.6 %, and highest cellulose content of 82.1 wt% due to effective removal of non-cellulose impurities. Moreover, the fibers had tensile properties close to cotton fibers. Overall, the cotton stalk fibers presented a better potential to be used as textile fibers than those reported by previous researches. explosion–KOH–H2O2 could be an efficient method for exploring textile applications of bark of cotton stalks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017–1023CrossRef
Zurück zum Zitat Agnemo R, Gellerstedt G (1979) The reactions of lignin with alkaline hydrogen peroxide. Part II. Factors influencing the decomposition of phenolic structures. Acta Chem Scand B 33(5):337–342CrossRef Agnemo R, Gellerstedt G (1979) The reactions of lignin with alkaline hydrogen peroxide. Part II. Factors influencing the decomposition of phenolic structures. Acta Chem Scand B 33(5):337–342CrossRef
Zurück zum Zitat Akdeniz RC, Acaroglu M, Hepbasli A (2004) Cotton stalk as a potential energy source. Energ Source 26(1):65–75CrossRef Akdeniz RC, Acaroglu M, Hepbasli A (2004) Cotton stalk as a potential energy source. Energ Source 26(1):65–75CrossRef
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-Wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671CrossRef
Zurück zum Zitat CAO S, TAN B, LIU S, Feng Y, QU J (2011) Effects of Continuous Steam Explosion on Mechanical Properties of PP/Cotton Stalk Composites. China Plastics Ind 39(7):60–63 CAO S, TAN B, LIU S, Feng Y, QU J (2011) Effects of Continuous Steam Explosion on Mechanical Properties of PP/Cotton Stalk Composites. China Plastics Ind 39(7):60–63
Zurück zum Zitat Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338CrossRef Chen Y, Wang Y, Wan J, Ma Y (2010) Crystal and pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):329–338CrossRef
Zurück zum Zitat Das PK, Nag D, Debnath S, Nayak LK (2010) Machinery for extraction and traditional spinning of plant fibres. Indian J Tradit Knowl 9(2):386–393 Das PK, Nag D, Debnath S, Nayak LK (2010) Machinery for extraction and traditional spinning of plant fibres. Indian J Tradit Knowl 9(2):386–393
Zurück zum Zitat Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2):1514–1521CrossRef Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation-application in methylene blue adsorption from aqueous solution. J Hazard Mater 166(2):1514–1521CrossRef
Zurück zum Zitat Deng H, Li G, Yang H, Tang J, Tang J (2010a) Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J 163(3):373–381CrossRef Deng H, Li G, Yang H, Tang J, Tang J (2010a) Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J 163(3):373–381CrossRef
Zurück zum Zitat Deng H, Zhang G, Xu X, Tao G, Dai J (2010b) Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J Hazard Mater 182(1):217–224CrossRef Deng H, Zhang G, Xu X, Tao G, Dai J (2010b) Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J Hazard Mater 182(1):217–224CrossRef
Zurück zum Zitat French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
Zurück zum Zitat Gellerstedt G, Agnemo R (1980) The reactions of lignin with alkaline hydrogen peroxide. Part III. The oxidation of conjugated carbonyl structures. Acta Chem Scand B 34(4):275–280CrossRef Gellerstedt G, Agnemo R (1980) The reactions of lignin with alkaline hydrogen peroxide. Part III. The oxidation of conjugated carbonyl structures. Acta Chem Scand B 34(4):275–280CrossRef
Zurück zum Zitat Harwood J, McCormick P, Waldron D, Bonadei R (2008) Evaluation of flax accessions for high value textile end uses. Ind Crop Prod 27(1):22–28CrossRef Harwood J, McCormick P, Waldron D, Bonadei R (2008) Evaluation of flax accessions for high value textile end uses. Ind Crop Prod 27(1):22–28CrossRef
Zurück zum Zitat Hou X, Sun F, Yan D, Xu H, Dong Z, Li Q, Yang Y (2014) Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. J Clean Prod. doi:10.1016/j.jclepro.2014.07.018 Hou X, Sun F, Yan D, Xu H, Dong Z, Li Q, Yang Y (2014) Preparation of lightweight polypropylene composites reinforced by cotton stalk fibers from combined steam flash-explosion and alkaline treatment. J Clean Prod. doi:10.​1016/​j.​jclepro.​2014.​07.​018
Zurück zum Zitat Ibrahim MM, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. Bioresources 5(1):397–418 Ibrahim MM, Agblevor FA, El-Zawawy WK (2010) Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. Bioresources 5(1):397–418
Zurück zum Zitat Jayaramudu J, Guduri BR, Varada Rajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79(4):847–851CrossRef Jayaramudu J, Guduri BR, Varada Rajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr Polym 79(4):847–851CrossRef
Zurück zum Zitat Li G, Yu Y, Zhao Z, Li J, Li C (2003) Properties study of cotton stalk fiber/gypsum composite. Cem Concr Res 33(1):43–46CrossRef Li G, Yu Y, Zhao Z, Li J, Li C (2003) Properties study of cotton stalk fiber/gypsum composite. Cem Concr Res 33(1):43–46CrossRef
Zurück zum Zitat Li L, Sun J, Jia G (2012) Properties of natural cotton stalk bark fiber under alkali treating. J Appl Polym Sci 125(S2):E534–E539CrossRef Li L, Sun J, Jia G (2012) Properties of natural cotton stalk bark fiber under alkali treating. J Appl Polym Sci 125(S2):E534–E539CrossRef
Zurück zum Zitat Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef
Zurück zum Zitat Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos B 44(1):433–438CrossRef Obi Reddy K, Uma Maheswari C, Shukla M, Song JI, Varada Rajulu A (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos B 44(1):433–438CrossRef
Zurück zum Zitat Oliveira F, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173CrossRef Oliveira F, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJ (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173CrossRef
Zurück zum Zitat Reddy N, Yang Y (2008) Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresour Technol 99(7):2449–2454CrossRef Reddy N, Yang Y (2008) Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresour Technol 99(7):2449–2454CrossRef
Zurück zum Zitat Reddy N, Yang Y (2009) Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour Technol 100(14):3563–3569CrossRef Reddy N, Yang Y (2009) Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresour Technol 100(14):3563–3569CrossRef
Zurück zum Zitat Reddy N, Salam A, Yang Y (2007) Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macro Mater Eng 292(4):458–466CrossRef Reddy N, Salam A, Yang Y (2007) Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macro Mater Eng 292(4):458–466CrossRef
Zurück zum Zitat Salam MA (2006) Effect of hydrogen peroxide bleaching onto sulfonated jute fiber. J Appl Polym Sci 99(6):3603–3607CrossRef Salam MA (2006) Effect of hydrogen peroxide bleaching onto sulfonated jute fiber. J Appl Polym Sci 99(6):3603–3607CrossRef
Zurück zum Zitat Salam A, Reddy N, Yang Y (2007) Bleaching of kenaf and cornhusk fibers. Ind Eng Chem Res 46(5):1452–1458CrossRef Salam A, Reddy N, Yang Y (2007) Bleaching of kenaf and cornhusk fibers. Ind Eng Chem Res 46(5):1452–1458CrossRef
Zurück zum Zitat Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers-an overview. Prog Polym Sci 34(9):982–1021CrossRef Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers-an overview. Prog Polym Sci 34(9):982–1021CrossRef
Zurück zum Zitat Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637CrossRef Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A 39(10):1632–1637CrossRef
Zurück zum Zitat Subramanian K, Senthil Kumar P, Jeyapal P, Venkatesh N (2005) Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications—an exploratory investigation. Eur Polym J 41(4):853–861CrossRef Subramanian K, Senthil Kumar P, Jeyapal P, Venkatesh N (2005) Characterization of ligno-cellulosic seed fibre from Wrightia Tinctoria plant for textile applications—an exploratory investigation. Eur Polym J 41(4):853–861CrossRef
Zurück zum Zitat Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576CrossRef
Zurück zum Zitat Wu Y, Wang S, Zhou D, Xing C, Zhang Y, Cai Z (2010) Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresource Technol 101(8):2867–2871 Wu Y, Wang S, Zhou D, Xing C, Zhang Y, Cai Z (2010) Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation. Bioresource Technol 101(8):2867–2871
Zurück zum Zitat Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319CrossRef Xiao B, Sun XF, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74(2):307–319CrossRef
Zurück zum Zitat Xu W, Reddy N, Yang Y (2009) Extraction, characterization and potential applications of cellulose in corn kernels and Distillers’ dried grains with solubles (DDGS). Carbohydr Polym 76(4):521–527CrossRef Xu W, Reddy N, Yang Y (2009) Extraction, characterization and potential applications of cellulose in corn kernels and Distillers’ dried grains with solubles (DDGS). Carbohydr Polym 76(4):521–527CrossRef
Zurück zum Zitat Yao M, Chen MY, Wu ZY et al (2011) Science of textile materials. China Textile and Apparel Press, Beijing Yao M, Chen MY, Wu ZY et al (2011) Science of textile materials. China Textile and Apparel Press, Beijing
Zurück zum Zitat Yu Z, Zhang B, Yu F, Xu G, Song A (2012) A real explosion: the requirement of steam explosion pretreatment. Bioresour Technol 121:335–341CrossRef Yu Z, Zhang B, Yu F, Xu G, Song A (2012) A real explosion: the requirement of steam explosion pretreatment. Bioresour Technol 121:335–341CrossRef
Zurück zum Zitat Zhao W, Yang R, Zhang Y, Wu L (2012) Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam explosion. Green Chem 14(12):3352–3360CrossRef Zhao W, Yang R, Zhang Y, Wu L (2012) Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam explosion. Green Chem 14(12):3352–3360CrossRef
Zurück zum Zitat Zheng JL, Yi WM, Wang NN (2008) Bio-oil production from cotton stalk. Energy Convers Manage 49(6):1724–1730CrossRef Zheng JL, Yi WM, Wang NN (2008) Bio-oil production from cotton stalk. Energy Convers Manage 49(6):1724–1730CrossRef
Zurück zum Zitat Zhou XY, Zheng F, Li HG, Lu CL (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energ Build 42(7):1070–1074CrossRef Zhou XY, Zheng F, Li HG, Lu CL (2010) An environment-friendly thermal insulation material from cotton stalk fibers. Energ Build 42(7):1070–1074CrossRef
Zurück zum Zitat Zhou L, Shao JZ, Feng XX, Chen JY (2012) Effect of high-temperature degumming on the constituents and structure of cotton stalk bark fibers. J Appl Polym Sci 125(S2):E573–E579CrossRef Zhou L, Shao JZ, Feng XX, Chen JY (2012) Effect of high-temperature degumming on the constituents and structure of cotton stalk bark fibers. J Appl Polym Sci 125(S2):E573–E579CrossRef
Zurück zum Zitat Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592CrossRef Zuluaga R, Putaux JL, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14(6):585–592CrossRef
Metadaten
Titel
Textile grade long natural cellulose fibers from bark of cotton stalks using steam explosion as a pretreatment
verfasst von
Zhen Dong
Xiuliang Hou
Fangfang Sun
Li Zhang
Yiqi Yang
Publikationsdatum
01.10.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-014-0401-5

Weitere Artikel der Ausgabe 5/2014

Cellulose 5/2014 Zur Ausgabe