Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2021

25.01.2021 | Original Research Article

Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations

verfasst von: Aman Gupta, Rajesh Kisni Khatirkar, Amit Kumar, Khushahal Sunil Thool, Nitish Bhibhanshu, Satyam Suwas

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructure evolution and texture development during cold rolling of a Ti15333 alloy were systematically investigated in the present work. Texture was simulated using mean-field [Visco-Plastic Self-Consistent (VPSC) and Taylor] models. Evolution of crystallographic texture was also simulated using the Visco-Plastic Fast Fourier Transform (VPFFT) model. The as-received samples (in the hot-forged and hot-rolled condition) were cold rolled unidirectionally up to 20, 40, 60 and 80 pct thickness reductions. Increase in the cold-rolling reduction resulted in changes in the crystallographic texture as well as grain morphology. The initial hot-rolled sample consisted of in-grain shear bands that were aligned approximately ± 35 to 40 ° with respect to the sample rolling direction. Shear band density gradually increased with the increase in cold-rolling reduction, and these bands usually represent narrow zones of intense strain. α (RD//〈110〉) and γ (ND//〈111〉) fibers were observed in all the cold-rolled samples. The volume fraction of both these fibers was found to be highest for the 80 pct deformed sample. For mean-field simulations, the normalized difference of the texture index (normalized TIdiff) was found to be a good criterion to represent the match between the simulated and experimental texture. The affine model (VPSC) was found to give a good match with the experimental texture compared to the Taylor models. The γ-fiber and α-fiber were always overestimated in mean-field VPSC simulations. Extensive shear band formation could be the possible reason for mismatch between the simulated and experimental texture. For VPFFT simulations, the general texture evolution involved the intensification of the γ-fiber and α-fiber texture. Simulated texture was reasonably well predicted quantitatively with VPFFT, analyzed based on the volume fraction of the different texture fibers/components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer-Verlag Berlin Heidelberg, Hamburg, 2007. G. Lütjering and J.C. Williams: Titanium, 2nd edn., Springer-Verlag Berlin Heidelberg, Hamburg, 2007.
2.
Zurück zum Zitat I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.CrossRef I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46–65.CrossRef
3.
4.
Zurück zum Zitat A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar: J. Mater. Res., 2018, vol. 33, pp. 946–57.CrossRef A. Gupta, R.K. Khatirkar, A. Kumar, and M.S. Parihar: J. Mater. Res., 2018, vol. 33, pp. 946–57.CrossRef
5.
Zurück zum Zitat O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y. V. Matviychuk: Mater. Sci. Eng. A, 2003, vol. 354, pp. 121–32.CrossRef O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and Y. V. Matviychuk: Mater. Sci. Eng. A, 2003, vol. 354, pp. 121–32.CrossRef
6.
Zurück zum Zitat A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, and S. Mishra: J. Mater. Res., 2019, vol. 34, pp. 1–11.CrossRef A. Gupta, R.K. Khatirkar, T. Dandekar, J.S. Jha, and S. Mishra: J. Mater. Res., 2019, vol. 34, pp. 1–11.CrossRef
7.
Zurück zum Zitat R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 884–93.CrossRef R. Khatirkar, B. Vadavadagi, S.K. Shekhawat, A. Haldar, and I. Samajdar: ISIJ Int., 2012, vol. 52, pp. 884–93.CrossRef
8.
Zurück zum Zitat S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springers, Manchester, UK, 2014.CrossRef S. Suwas and R.K. Ray: Crystallographic Texture of Materials, Springers, Manchester, UK, 2014.CrossRef
9.
Zurück zum Zitat R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.CrossRef R. Khatirkar, L. Kestens, R. Petrov, and I. Samajdar: ISIJ Int., 2009, vol. 49, pp. 78–85.CrossRef
10.
Zurück zum Zitat G. Alireza, P.D. Hodgson, and M.R. Barnett: Key Eng. Mater., 2013, vol. 551, pp. 210–16.CrossRef G. Alireza, P.D. Hodgson, and M.R. Barnett: Key Eng. Mater., 2013, vol. 551, pp. 210–16.CrossRef
11.
Zurück zum Zitat N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.CrossRef N.P. Gurao, A. Ali, and S. Suwas: Mater. Sci. Eng. A, 2009, vol. 504, pp. 24–35.CrossRef
12.
Zurück zum Zitat H. Inoue, S. Fukushima, and N. Inakazu: Mater. Trans., 1992, vol. 33, pp. 129–37.CrossRef H. Inoue, S. Fukushima, and N. Inakazu: Mater. Trans., 1992, vol. 33, pp. 129–37.CrossRef
13.
Zurück zum Zitat B.K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: Textures Microstruct., 1999, vol. 32, pp. 21–39.CrossRef B.K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, A.K. Sbitnev, and L.R. Vladimirov: Textures Microstruct., 1999, vol. 32, pp. 21–39.CrossRef
14.
Zurück zum Zitat W.B. Lee and K.C. Chan: Acta Metall. Mater., 1991, vol. 39, pp. 411–7.CrossRef W.B. Lee and K.C. Chan: Acta Metall. Mater., 1991, vol. 39, pp. 411–7.CrossRef
15.
Zurück zum Zitat I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.CrossRef I.L. Dillamore, J.G. Roberts, and A.C. Bush: Met. Sci., 1979, vol. 13, pp. 73–7.CrossRef
16.
Zurück zum Zitat M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena, Pergamon: Elsevier, 2012. M. Hatherly and F.J. Humphreys: Recrystallization and Related Annealing Phenomena, Pergamon: Elsevier, 2012.
17.
Zurück zum Zitat K. Murakami, M. Sugiyama, and K. Ushioda: IOP Conf. Ser. Mater. Sci. Eng., 2015, 89: 89.CrossRef K. Murakami, M. Sugiyama, and K. Ushioda: IOP Conf. Ser. Mater. Sci. Eng., 2015, 89: 89.CrossRef
18.
Zurück zum Zitat P. Bate: Philos. Trans. R. Soc. Lond. Ser. A 1999, vol. 357, pp. 1589– 1601.CrossRef P. Bate: Philos. Trans. R. Soc. Lond. Ser. A 1999, vol. 357, pp. 1589– 1601.CrossRef
20.
Zurück zum Zitat A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.CrossRef A. Molinari, G.R. Canova, and S. Ahzi: Acta Metall., 1987, vol. 35, pp. 2983–94.CrossRef
21.
Zurück zum Zitat R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef
22.
23.
Zurück zum Zitat F. Wagner, G. Canova, P. Van Houtte, and A. Molinari: Textures Microstruct., 1991, vol. 14, pp. 1135–40.CrossRef F. Wagner, G. Canova, P. Van Houtte, and A. Molinari: Textures Microstruct., 1991, vol. 14, pp. 1135–40.CrossRef
24.
25.
Zurück zum Zitat S. M’Guil, W. Wen, S. Ahzi, and J.J. Gracio: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5840–53.CrossRef S. M’Guil, W. Wen, S. Ahzi, and J.J. Gracio: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5840–53.CrossRef
26.
Zurück zum Zitat B. Hutchinson: Philos. Trans. R. Soc. London. Ser. A, 1999, vol. 357, pp. 1471–85.CrossRef B. Hutchinson: Philos. Trans. R. Soc. London. Ser. A, 1999, vol. 357, pp. 1471–85.CrossRef
27.
28.
Zurück zum Zitat F. Royer, A. Nadari, F. Yala, and P. Lipinski: Textures Microstruct., 1991, vol. 14–18, pp. 1129–34.CrossRef F. Royer, A. Nadari, F. Yala, and P. Lipinski: Textures Microstruct., 1991, vol. 14–18, pp. 1129–34.CrossRef
29.
Zurück zum Zitat C. Adam, U. Lin, H. Thomas, and A.D. Rollet: Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 1–19.CrossRef C. Adam, U. Lin, H. Thomas, and A.D. Rollet: Integr. Mater. Manuf. Innov., 2014, vol. 3, pp. 1–19.CrossRef
30.
Zurück zum Zitat H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol. 157, pp. 69–94.CrossRef H. Moulinec and P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol. 157, pp. 69–94.CrossRef
31.
Zurück zum Zitat R.A. Lebensohn, M. Zecevic, M. Knezevic, and R.J. McCabe: Acta Mater., 2016, vol. 104, pp. 228–36.CrossRef R.A. Lebensohn, M. Zecevic, M. Knezevic, and R.J. McCabe: Acta Mater., 2016, vol. 104, pp. 228–36.CrossRef
32.
Zurück zum Zitat R.A. Lebensohn, Y. Liu, and P.P. Castañeda: Acta Mater., 2004, vol. 52, pp. 5347–61.CrossRef R.A. Lebensohn, Y. Liu, and P.P. Castañeda: Acta Mater., 2004, vol. 52, pp. 5347–61.CrossRef
33.
34.
Zurück zum Zitat C. Paramatmuni and A.K. Kanjarla: Int. J. Plast., 2019, vol. 113, pp. 269–90.CrossRef C. Paramatmuni and A.K. Kanjarla: Int. J. Plast., 2019, vol. 113, pp. 269–90.CrossRef
35.
Zurück zum Zitat S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–4508.CrossRef S. Sinha, A. Ghosh, and N.P. Gurao: Philos. Mag., 2016, vol. 96, pp. 1485–4508.CrossRef
36.
Zurück zum Zitat RK Sabat, MVSSDSS Pavan, DS Aakash, M Kumar, SK Sahoo (2018) Philos. Mag. 98, 2562–81.CrossRef RK Sabat, MVSSDSS Pavan, DS Aakash, M Kumar, SK Sahoo (2018) Philos. Mag. 98, 2562–81.CrossRef
37.
Zurück zum Zitat A.S.M. Handbook: Metallography and Microstructures, ASM International, Materials Park, 2004. A.S.M. Handbook: Metallography and Microstructures, ASM International, Materials Park, 2004.
38.
Zurück zum Zitat OIM: Anal. Version 7.2. User Manual, TexSEM Lab. Inc., Draper, 2013. OIM: Anal. Version 7.2. User Manual, TexSEM Lab. Inc., Draper, 2013.
39.
Zurück zum Zitat P. Van Houtte: The ‘MTM-FHM’ Software System, Version 2 Manual . P. Van Houtte: The ‘MTM-FHM’ Software System, Version 2 Manual .
40.
Zurück zum Zitat S. Ghosh, S. Keshavarz, and G. Weber: in Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, H. Altenbach and M. Brünig, eds., Springer International Publishing, Cham, 2015, pp. 67–96. S. Ghosh, S. Keshavarz, and G. Weber: in Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, H. Altenbach and M. Brünig, eds., Springer International Publishing, Cham, 2015, pp. 67–96.
41.
Zurück zum Zitat ASTM: ASTM E112-10, 2012, pp. 1–27. ASTM: ASTM E112-10, 2012, pp. 1–27.
42.
Zurück zum Zitat A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, p. 109884.CrossRef A. Gupta, R.K. Khatirkar, A. Kumar, K. Thool, N. Bibhanshu, and S. Suwas: Mater. Charact., 2019, vol. 156, p. 109884.CrossRef
43.
Zurück zum Zitat V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, 6: pp. 2–9.CrossRef V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, 6: pp. 2–9.CrossRef
44.
Zurück zum Zitat C.G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 79–83.CrossRef C.G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 79–83.CrossRef
45.
Zurück zum Zitat A. Bhattacharyya, M. Knezevic, and M. Abouaf: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1085–96. A. Bhattacharyya, M. Knezevic, and M. Abouaf: Metall. Mater. Trans. A, 2014, vol. 46A, pp. 1085–96.
46.
Zurück zum Zitat I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.CrossRef I.L. Dillamore, C.J.E. Smith, and T.W. Watson: Met. Sci. J., 1967, vol. 1, pp. 49–54.CrossRef
47.
Zurück zum Zitat R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.CrossRef R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.CrossRef
48.
49.
Zurück zum Zitat P.P. Date, S.K. Yerra, H. V Vankudre, and I. Samajdar: J. Eng. Mater. Technol., 2018, vol. 126, pp. 53–61. P.P. Date, S.K. Yerra, H. V Vankudre, and I. Samajdar: J. Eng. Mater. Technol., 2018, vol. 126, pp. 53–61.
50.
Zurück zum Zitat B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, NY, 2007.
51.
53.
54.
Zurück zum Zitat S.N. Nasser, W.G. Guo, and J.Y. Cheng: Acta matter, 1999, vol. 47, pp. 3705–20.CrossRef S.N. Nasser, W.G. Guo, and J.Y. Cheng: Acta matter, 1999, vol. 47, pp. 3705–20.CrossRef
55.
Zurück zum Zitat S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425–39.CrossRef S.N. Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425–39.CrossRef
56.
Zurück zum Zitat S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: ISIJ Int., 2002, vol. 42, pp. 770–8.CrossRef S. Cicalè, I. Samajdar, B. Verlinden, G. Abbruzzese, and P. Van Houtte: ISIJ Int., 2002, vol. 42, pp. 770–8.CrossRef
57.
58.
59.
Zurück zum Zitat A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas: Philos. Mag., 2017, vol. 97, pp. 1939–62.CrossRef A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu, and S. Suwas: Philos. Mag., 2017, vol. 97, pp. 1939–62.CrossRef
61.
Zurück zum Zitat V. Tari, A.D. Rollett, H. El Kadiri, H. Beladi, A.L. Oppedal, and R.L. King: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, pp. 1–23.CrossRef V. Tari, A.D. Rollett, H. El Kadiri, H. Beladi, A.L. Oppedal, and R.L. King: Model. Simul. Mater. Sci. Eng., 2015, vol. 23, pp. 1–23.CrossRef
62.
Zurück zum Zitat R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.CrossRef R. Pokharel, J. Lind, A.K. Kanjarla, R.A. Lebensohn, S.F. Li, P. Kenesei, R.M. Suter, and A.D. Rollett: Annu. Rev. Condens. Matter Phys., 2014, vol. 5, pp. 317–46.CrossRef
63.
Zurück zum Zitat O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plast., 2005, vol. 21, pp. 691–722.CrossRef O. Diard, S. Leclercq, G. Rousselier, and G. Cailletaud: Int. J. Plast., 2005, vol. 21, pp. 691–722.CrossRef
64.
Zurück zum Zitat P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, G. Samaey, and D. Roose: JOM, 2011, vol. 63, pp. 37–43.CrossRef P. Van Houtte, J. Gawad, P. Eyckens, B. Van Bael, G. Samaey, and D. Roose: JOM, 2011, vol. 63, pp. 37–43.CrossRef
Metadaten
Titel
Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations
verfasst von
Aman Gupta
Rajesh Kisni Khatirkar
Amit Kumar
Khushahal Sunil Thool
Nitish Bhibhanshu
Satyam Suwas
Publikationsdatum
25.01.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-020-06117-0

Weitere Artikel der Ausgabe 3/2021

Metallurgical and Materials Transactions A 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.