Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2014 | Original Paper | Ausgabe 3/2014

International Journal on Document Analysis and Recognition (IJDAR) 3/2014

Texture sparseness for pixel classification of business document images

Zeitschrift:
International Journal on Document Analysis and Recognition (IJDAR) > Ausgabe 3/2014
Autoren:
Melissa Cote, Alexandra Branzan Albu
Wichtige Hinweise
This work was supported by the Natural Sciences and Engineering Research Council of Canada and SAP Canada through the Collaborative Research and Development Grants Program. Special thanks to Prof. Nicholas Journet for his help on implementing the comparison method of Sect. 5.4.

Abstract

Contemporary business documents contain diverse, multi-layered mixtures of textual, graphical, and pictorial elements. Existing methods for document segmentation and classification do not handle well the complexity and variety of contents, geometric layout, and elemental shapes. This paper proposes a novel document image classification approach that distributes individual pixels into four fundamental classes (text, image, graphics, and background) through support vector machines. This approach uses a novel low-dimensional feature descriptor based on textural properties. The proposed feature vector is constructed by considering the sparseness of the document image responses to a filter bank on a multi-resolution and contextual basis. Qualitative and quantitative evaluations on business document images show the benefits of adopting a contextual and multi-resolution approach. The proposed approach achieves excellent results; it is able to handle varied contents and complex document layouts, without imposing any constraint or making assumptions about the shape and spatial arrangement of document elements.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2014

International Journal on Document Analysis and Recognition (IJDAR) 3/2014 Zur Ausgabe

Premium Partner

    Bildnachweise