Skip to main content

2018 | OriginalPaper | Buchkapitel

The Application of CFD Methods for Modeling of a Three-Phase Fixed-Bed Reactor

verfasst von : Daniel Janecki, Grażyna Bartelmus, Andrzej Burghardt

Erschienen in: Practical Aspects of Chemical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mathematical model of the three-phase fixed-bed reactor (TBR) consisting of the continuity equation, the momentum balances of each phase and mass balances of reaction mixture components were presented and discussed. These balances are the result of averaging by means of Euler’s procedure and form the basis of the Computational Fluid Dynamics (CFD). Although the CFD model is based on fundamental principles some empirical relations (closure lows) must be implemented into the momentum balance in order to ensure a proper description of the dynamics of very complex three-phase system. Therefore, the sensitivity of a multiphase CFD model with respect to relations defining drag forces between phases, distribution of porosity in the cross-section of the reactor and the values of Ergun constants was analyzed. As an example of advantages resulting from using CFD model in computations of hydrodynamic parameters the process of catalytic wet air oxidation (CWAO) of phenol carried out in the trickle-bed reactor was presented. The comparative calculations showed that the CFD model describes better the hydrodynamic phenomena in the bed than the simple plug flow model and as a result predicts much more accurate the outlet concentrations of reacting components.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Dahhan MH, Larachi F, Duduković MP et al (1997) High pressure trickle-bed reactors: a review. Ind Eng Chem Res 36:3292–3314CrossRef Al-Dahhan MH, Larachi F, Duduković MP et al (1997) High pressure trickle-bed reactors: a review. Ind Eng Chem Res 36:3292–3314CrossRef
Zurück zum Zitat Atta A, Shantanu R, Nigam KDP (2007a) Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem Eng Sci 62:5870–5879CrossRef Atta A, Shantanu R, Nigam KDP (2007a) Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem Eng Sci 62:5870–5879CrossRef
Zurück zum Zitat Atta A, Shantanu R, Nigam KDP (2007b) Investigation of liquid maldistribution in trickle bed reactor using porous media concept in CFD. Chem Eng Sci 62:7033–7044CrossRef Atta A, Shantanu R, Nigam KDP (2007b) Investigation of liquid maldistribution in trickle bed reactor using porous media concept in CFD. Chem Eng Sci 62:7033–7044CrossRef
Zurück zum Zitat Atta A, Hamidipour M, Roy S et al (2010a) Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem Eng Sci 65:1044–1150CrossRef Atta A, Hamidipour M, Roy S et al (2010a) Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem Eng Sci 65:1044–1150CrossRef
Zurück zum Zitat Atta A, Roy S, Nigam KDP (2010b) A two-phase Eulerian approach using relative permeability concept for modeling of hydrodynamics in trickle-bed reactors at elevated pressure. Chem Eng Res Des 88:369–378CrossRef Atta A, Roy S, Nigam KDP (2010b) A two-phase Eulerian approach using relative permeability concept for modeling of hydrodynamics in trickle-bed reactors at elevated pressure. Chem Eng Res Des 88:369–378CrossRef
Zurück zum Zitat Attou A, Ferschneider G (2000) A two-fluid hydrodynamic model for the transition between trickle and pulse flow in cocurrent gas-liquid packed-bed reactor. Chem Eng Sci 55:491–511CrossRef Attou A, Ferschneider G (2000) A two-fluid hydrodynamic model for the transition between trickle and pulse flow in cocurrent gas-liquid packed-bed reactor. Chem Eng Sci 55:491–511CrossRef
Zurück zum Zitat Attou A, Boyer C, Ferschneider G (1999) Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem Eng Sci 54:785–802CrossRef Attou A, Boyer C, Ferschneider G (1999) Modeling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem Eng Sci 54:785–802CrossRef
Zurück zum Zitat Bartelmus G, Janecki D (2003) Hydrodynamics of a cocurrent downflow of gas and foaming liquid through the packed bed. Part II. Liquid holdup and gas pressure drop. Chem Eng Process 42:993–1005CrossRef Bartelmus G, Janecki D (2003) Hydrodynamics of a cocurrent downflow of gas and foaming liquid through the packed bed. Part II. Liquid holdup and gas pressure drop. Chem Eng Process 42:993–1005CrossRef
Zurück zum Zitat Bartelmus G, Gancarczyk A, Stasiak M (1998) Hydrodynamics of cocurrent fixed-bed three-phase reactors, the effect of physicochemical properties of the liquid on pulse velocity. Chem Eng Proc 37:331–341CrossRef Bartelmus G, Gancarczyk A, Stasiak M (1998) Hydrodynamics of cocurrent fixed-bed three-phase reactors, the effect of physicochemical properties of the liquid on pulse velocity. Chem Eng Proc 37:331–341CrossRef
Zurück zum Zitat Boyer C, Koudil A, Chen P et al (2005) Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem Eng Sci 60:6279–6288CrossRef Boyer C, Koudil A, Chen P et al (2005) Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem Eng Sci 60:6279–6288CrossRef
Zurück zum Zitat Burghardt A (2014) Eulerian three-phase flow model applied to trickle-bed reactors. Chem Process Eng 35(1):75–96CrossRef Burghardt A (2014) Eulerian three-phase flow model applied to trickle-bed reactors. Chem Process Eng 35(1):75–96CrossRef
Zurück zum Zitat Burghardt A, Bartelmus G, Gancarczyk A (1999) Hydrodynamics of pulsing flow in three-phase catalytic reactors. Chem Eng Proc 38:441–426 Burghardt A, Bartelmus G, Gancarczyk A (1999) Hydrodynamics of pulsing flow in three-phase catalytic reactors. Chem Eng Proc 38:441–426
Zurück zum Zitat Burghardt A, Bartelmus G, Janecki D et al (2002) Hydrodynamics of a three-phase fixed-bed reactor operating in the pulsing flow regime at an elevated pressure. Chem Eng Sci 57:4855–4863CrossRef Burghardt A, Bartelmus G, Janecki D et al (2002) Hydrodynamics of a three-phase fixed-bed reactor operating in the pulsing flow regime at an elevated pressure. Chem Eng Sci 57:4855–4863CrossRef
Zurück zum Zitat Burghardt A, Bartelmus G, Szlemp A et al (2005) Analiza matematycznych kryteriów zmiany reżimów hydrodynamicznych w reaktorach trójfazowych. Chem Process Eng 26:259–279 Burghardt A, Bartelmus G, Szlemp A et al (2005) Analiza matematycznych kryteriów zmiany reżimów hydrodynamicznych w reaktorach trójfazowych. Chem Process Eng 26:259–279
Zurück zum Zitat Charpentier JC, Favier M (1975) Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AJChE J 21:1213–1218 Charpentier JC, Favier M (1975) Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AJChE J 21:1213–1218
Zurück zum Zitat de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49:2022–2029CrossRef de Klerk A (2003) Voidage variation in packed beds at small column to particle diameter ratio. AIChE J 49:2022–2029CrossRef
Zurück zum Zitat Duduković MP, Larachi F, Mills PL (2002) Multiphase catalytic reactors: a perspective on concurrent knowledge and future trends. Catal Rev 44:123–146CrossRef Duduković MP, Larachi F, Mills PL (2002) Multiphase catalytic reactors: a perspective on concurrent knowledge and future trends. Catal Rev 44:123–146CrossRef
Zurück zum Zitat Enwald H, Peirano E, Almsted AE (1996) Eulerian two-phase flow theory applied to fluidization. Int J Multiphase Flow 22:21–66CrossRef Enwald H, Peirano E, Almsted AE (1996) Eulerian two-phase flow theory applied to fluidization. Int J Multiphase Flow 22:21–66CrossRef
Zurück zum Zitat Grosser K, Carbonell RG, Sandaresan S (1988) Onset of pulsing flow in two-phase cocurrent down flow through a packed bed. AIChE J 34:1850–1860CrossRef Grosser K, Carbonell RG, Sandaresan S (1988) Onset of pulsing flow in two-phase cocurrent down flow through a packed bed. AIChE J 34:1850–1860CrossRef
Zurück zum Zitat Gunjal PR, Ranade VV (2007) Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem Eng Sci 62:5512–5526CrossRef Gunjal PR, Ranade VV (2007) Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem Eng Sci 62:5512–5526CrossRef
Zurück zum Zitat Gunjal PR, Ranade VV, Chaudhari RV (2003) Liquid distribution and RTD in trickle bed reactors: experiments and CFD simulations. Can J Chem Eng 81:821–830CrossRef Gunjal PR, Ranade VV, Chaudhari RV (2003) Liquid distribution and RTD in trickle bed reactors: experiments and CFD simulations. Can J Chem Eng 81:821–830CrossRef
Zurück zum Zitat Gunjal PR, Kashid MN, Ranade VV et al (2005) Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind Eng Chem Res 44:6278–6294CrossRef Gunjal PR, Kashid MN, Ranade VV et al (2005) Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind Eng Chem Res 44:6278–6294CrossRef
Zurück zum Zitat Hamidipour M, Chen J, Larachi F (2013) CFD study and experimental validation of trickle bed hydrodynamics under gas, liquid and gas/liquid alternating cyclic operations. Chem Eng Sci 89:158–170CrossRef Hamidipour M, Chen J, Larachi F (2013) CFD study and experimental validation of trickle bed hydrodynamics under gas, liquid and gas/liquid alternating cyclic operations. Chem Eng Sci 89:158–170CrossRef
Zurück zum Zitat Herskowitz M, Smith JM (1978) Liquid distribution in trickle-bed reactors. AIChE J 24:439–450CrossRef Herskowitz M, Smith JM (1978) Liquid distribution in trickle-bed reactors. AIChE J 24:439–450CrossRef
Zurück zum Zitat Holub RA, Duduković PA, Ramachandran PA (1992) A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow. Chem Eng Sci 47:2343–2348CrossRef Holub RA, Duduković PA, Ramachandran PA (1992) A phenomenological model for pressure drop, liquid holdup and flow regime transition in gas-liquid trickle flow. Chem Eng Sci 47:2343–2348CrossRef
Zurück zum Zitat Hunt ML, Tien CL (1990) Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chem Eng Sci 45:55–63CrossRef Hunt ML, Tien CL (1990) Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chem Eng Sci 45:55–63CrossRef
Zurück zum Zitat Iliuta I, Larachi F, Grandjean BPA (1998) Pressure drop and liquid holdup in trickle flow reactors: improved Ergun constants and slip correlations for the slit model. Ind Eng Chem Res 37:4542–4550CrossRef Iliuta I, Larachi F, Grandjean BPA (1998) Pressure drop and liquid holdup in trickle flow reactors: improved Ergun constants and slip correlations for the slit model. Ind Eng Chem Res 37:4542–4550CrossRef
Zurück zum Zitat Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd edn. Springer, New YorkCrossRef Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd edn. Springer, New YorkCrossRef
Zurück zum Zitat Janecki D, Burghardt A, Bartelmus G (2008) Computational simulations of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem Proc Eng 29:583–596 Janecki D, Burghardt A, Bartelmus G (2008) Computational simulations of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem Proc Eng 29:583–596
Zurück zum Zitat Janecki D, Burghardt A, Bartelmus G (2014) Influence of the porosity profile and sets of Ergun constants on the main hydrodynamic parameters in the trickle-bed reactors. Chem Eng J 237:176–188CrossRef Janecki D, Burghardt A, Bartelmus G (2014) Influence of the porosity profile and sets of Ergun constants on the main hydrodynamic parameters in the trickle-bed reactors. Chem Eng J 237:176–188CrossRef
Zurück zum Zitat Janecki D, Burghardt A, Bartelmus G (2016a) Parametric sensitivity of CFD model concerning the hydrodynamics of trickle-bed reactor (TBR). Chem Proc Eng 37:97–107 Janecki D, Burghardt A, Bartelmus G (2016a) Parametric sensitivity of CFD model concerning the hydrodynamics of trickle-bed reactor (TBR). Chem Proc Eng 37:97–107
Zurück zum Zitat Janecki D, Szczotka A, Burghardt A et al (2016b) Modelling of wet-air oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. J Chem Technol Biotechnol 91:59–607CrossRef Janecki D, Szczotka A, Burghardt A et al (2016b) Modelling of wet-air oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. J Chem Technol Biotechnol 91:59–607CrossRef
Zurück zum Zitat Jiang Y, Khadikar MR, Al-Dahhan MH et al (1999) CFD modeling of multiphase flow distribution in catalytic packed bed reactors: Scale down issues. Catal Today 66:209–218CrossRef Jiang Y, Khadikar MR, Al-Dahhan MH et al (1999) CFD modeling of multiphase flow distribution in catalytic packed bed reactors: Scale down issues. Catal Today 66:209–218CrossRef
Zurück zum Zitat Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2001) CFD modelling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal Today 66:209–218CrossRef Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2001) CFD modelling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal Today 66:209–218CrossRef
Zurück zum Zitat Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2002a) CFD of multiphase flow in packed-bed reactors: I. K-fluid modelling issues. AIChE J 48:701–715CrossRef Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2002a) CFD of multiphase flow in packed-bed reactors: I. K-fluid modelling issues. AIChE J 48:701–715CrossRef
Zurück zum Zitat Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2002b) CFD of multiphase flow in packed-bed reactors: II. Results and applications. AIChE J 48:716–730CrossRef Jiang Y, Khadilkar MR, Al-Dahhan MH et al (2002b) CFD of multiphase flow in packed-bed reactors: II. Results and applications. AIChE J 48:716–730CrossRef
Zurück zum Zitat Kuzeljevic ZV, Dudukovic MP (2012) Computational modeling of trickle bed reactors. Ind Eng Chem Res 51:1663–1671CrossRef Kuzeljevic ZV, Dudukovic MP (2012) Computational modeling of trickle bed reactors. Ind Eng Chem Res 51:1663–1671CrossRef
Zurück zum Zitat Lappalainen K, Manninen M, Alopaeus V (2009) CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem Eng Sci 64:207–218CrossRef Lappalainen K, Manninen M, Alopaeus V (2009) CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem Eng Sci 64:207–218CrossRef
Zurück zum Zitat Larachi F, Laurent A, Midoux N et al (1991) Experimental study of a trickle-bed reactor operating at high pressure: two phase pressure drop and liquid saturation. Chem Eng Sci 46:1233–1246CrossRef Larachi F, Laurent A, Midoux N et al (1991) Experimental study of a trickle-bed reactor operating at high pressure: two phase pressure drop and liquid saturation. Chem Eng Sci 46:1233–1246CrossRef
Zurück zum Zitat Lopes RJG, Quinta-Ferreira RM (2008) Three dimensional numerical simulation of pressure drop and liquid holdup for high-pressure trickle-bed reactor. Chem Eng J 145:112–120CrossRef Lopes RJG, Quinta-Ferreira RM (2008) Three dimensional numerical simulation of pressure drop and liquid holdup for high-pressure trickle-bed reactor. Chem Eng J 145:112–120CrossRef
Zurück zum Zitat Lopes RJG, Quinta-Ferreira RM (2009) CFD modeling of multiphase flow distribution in trickle beds. Chem Eng J 147:342–355CrossRef Lopes RJG, Quinta-Ferreira RM (2009) CFD modeling of multiphase flow distribution in trickle beds. Chem Eng J 147:342–355CrossRef
Zurück zum Zitat Lopes RJG, Quinta-Ferreira RM (2010) Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactor. Ind Eng Chem Res 49:1105–1112CrossRef Lopes RJG, Quinta-Ferreira RM (2010) Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactor. Ind Eng Chem Res 49:1105–1112CrossRef
Zurück zum Zitat Lyczkowski RW (2010) The history of multiphase computational fluid dynamics. Ind Eng Chem Res 49:5029–5036CrossRef Lyczkowski RW (2010) The history of multiphase computational fluid dynamics. Ind Eng Chem Res 49:5029–5036CrossRef
Zurück zum Zitat MacDonald LF, El-Sayed MS, Mow K et al (1979) Flow through porous media—the Ergun equation revisited. Ind Eng Chem Fundam 18:199–208CrossRef MacDonald LF, El-Sayed MS, Mow K et al (1979) Flow through porous media—the Ergun equation revisited. Ind Eng Chem Fundam 18:199–208CrossRef
Zurück zum Zitat Martin H (1978) Low Peclet number particle to fluid heat and mass transfer. Chem Eng Sci 33:913–919CrossRef Martin H (1978) Low Peclet number particle to fluid heat and mass transfer. Chem Eng Sci 33:913–919CrossRef
Zurück zum Zitat Midoux N, Favier M, Charpentier JC (1976) Flow pattern, pressure loss and liquid holdup data in gas-liquid downflow packed beds with foaming and nonfoaming hydrocarbons. J Chem Eng Jpn 9:350–356CrossRef Midoux N, Favier M, Charpentier JC (1976) Flow pattern, pressure loss and liquid holdup data in gas-liquid downflow packed beds with foaming and nonfoaming hydrocarbons. J Chem Eng Jpn 9:350–356CrossRef
Zurück zum Zitat Mills PL, Dudukovic MP (1981) Evaluation of liquid-solid contacting in trickle-bed reactors by tracer methods. AIChE J 27:893–904CrossRef Mills PL, Dudukovic MP (1981) Evaluation of liquid-solid contacting in trickle-bed reactors by tracer methods. AIChE J 27:893–904CrossRef
Zurück zum Zitat Mueller G (1992) Radial void fraction distribution in randomly packed fixed beds of uniformly sized spheres in cylindrical containers. Powder Technol 72:269–275CrossRef Mueller G (1992) Radial void fraction distribution in randomly packed fixed beds of uniformly sized spheres in cylindrical containers. Powder Technol 72:269–275CrossRef
Zurück zum Zitat Saez AE, Carbonell RG (1985) Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE J 31:52–62CrossRef Saez AE, Carbonell RG (1985) Hydrodynamic parameters for gas-liquid cocurrent flow in packed beds. AIChE J 31:52–62CrossRef
Zurück zum Zitat Sai PST, Varma YBG (1987) Pressure drop in gas-liquid downflow through packed beds. AIChE J 33:2027–2036CrossRef Sai PST, Varma YBG (1987) Pressure drop in gas-liquid downflow through packed beds. AIChE J 33:2027–2036CrossRef
Zurück zum Zitat Saroha AK, Nigam KDP (1996) Trickle bed reactors. Rev Chem Eng 12:207–347CrossRef Saroha AK, Nigam KDP (1996) Trickle bed reactors. Rev Chem Eng 12:207–347CrossRef
Zurück zum Zitat Shah YT (1979) Gas-liquid-solid reactor design. Mc Graw Hill, New York Shah YT (1979) Gas-liquid-solid reactor design. Mc Graw Hill, New York
Zurück zum Zitat Soo SL (1990) Multiphase fluid dynamics. Science Press, Gower Technical, New York Soo SL (1990) Multiphase fluid dynamics. Science Press, Gower Technical, New York
Zurück zum Zitat Specchia V, Baldi G (1977) Pressure drop and liquid hold-up for two phase concurrent flow in packed beds. Chem Eng Sci 32:515–532CrossRef Specchia V, Baldi G (1977) Pressure drop and liquid hold-up for two phase concurrent flow in packed beds. Chem Eng Sci 32:515–532CrossRef
Zurück zum Zitat Sun CG, Yin FH, Afacan AKT et al (2000) Modelling and simulation of flow maldistribution in random packed columns with gas-liquid countercurrent flow. Trans IChemE 78A:378–388CrossRef Sun CG, Yin FH, Afacan AKT et al (2000) Modelling and simulation of flow maldistribution in random packed columns with gas-liquid countercurrent flow. Trans IChemE 78A:378–388CrossRef
Zurück zum Zitat Szady MJ, Sundaresan S (1991) Effect of boundaries on trickle bed hydrodynamics. AIChE J 37:1237–1241CrossRef Szady MJ, Sundaresan S (1991) Effect of boundaries on trickle bed hydrodynamics. AIChE J 37:1237–1241CrossRef
Zurück zum Zitat Szlemp A, Bartelmus G, Janecki D (2001) Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems. Chem Eng Sci 56:1111–1116CrossRef Szlemp A, Bartelmus G, Janecki D (2001) Hydrodynamics of a co-current three-phase solid-bed reactor for foaming systems. Chem Eng Sci 56:1111–1116CrossRef
Zurück zum Zitat Wammes WJA, Middelkamp J, Huisman WJ et al (1991) Hydrodynamics in a concurrent gas-liquid trickle bed at elevated pressures. AIChE J 37:1849–1861CrossRef Wammes WJA, Middelkamp J, Huisman WJ et al (1991) Hydrodynamics in a concurrent gas-liquid trickle bed at elevated pressures. AIChE J 37:1849–1861CrossRef
Metadaten
Titel
The Application of CFD Methods for Modeling of a Three-Phase Fixed-Bed Reactor
verfasst von
Daniel Janecki
Grażyna Bartelmus
Andrzej Burghardt
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-73978-6_11