Skip to main content

2018 | OriginalPaper | Buchkapitel

10. The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells

verfasst von : Shadi Darvish, Mohammad Asadikiya, Mei Yang, Yu Zhong

Erschienen in: Nanostructured Materials for Next-Generation Energy Storage and Conversion

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The fundamentals of solid oxide fuel cell (SOFC) and computational thermodynamics, using the CALPHAD (CALculation of PHAse Diagrams) approach, are reviewed in this chapter. The thermodynamic database development for perovskites and fluorites is especially discussed. In addition, the application of computational thermodynamics to the cathode and electrolyte of SOFC is also discussed in detail including the defect chemistry and quantitative Brouwer diagrams, electronic and ionic conductivity, cathode-electrolyte triple phase boundary (TPB) stability, thermomechanical properties of perovskite cathode, the effect of gas impurities like CO2 to the phase stability of cathode, and phase diagram development for nano (n-)yttria-stabilized zirconia (YSZ) particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Fuel Cells and Hydrogen Energy (Springer, Boston, 2009) T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Fuel Cells and Hydrogen Energy (Springer, Boston, 2009)
3.
Zurück zum Zitat F.-P. Negal, Electricity from Wood through the Combination of Gasification and Solid Oxide Fuel Cells (ETH/PSI, Zurich, 2008) F.-P. Negal, Electricity from Wood through the Combination of Gasification and Solid Oxide Fuel Cells (ETH/PSI, Zurich, 2008)
4.
Zurück zum Zitat N. Sammes, Y. Du, Intermediate-temperature SOFC electrolytes, in Fuel Cell Technologies: State and Perspectives, (Springer, Dordrecht, 2005), pp. 19–34 N. Sammes, Y. Du, Intermediate-temperature SOFC electrolytes, in Fuel Cell Technologies: State and Perspectives, (Springer, Dordrecht, 2005), pp. 19–34
5.
Zurück zum Zitat B.C. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001) B.C. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)
6.
Zurück zum Zitat T. Wolfram, S. Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites (Cambridge University Press, Cambridge, UK, 2006) T. Wolfram, S. Ellialtioglu, Electronic and Optical Properties of d-Band Perovskites (Cambridge University Press, Cambridge, UK, 2006)
7.
Zurück zum Zitat D.M. Smyth, The Defect Chemistry of Metal Oxides (Oxford University Press, New York, 2000) D.M. Smyth, The Defect Chemistry of Metal Oxides (Oxford University Press, New York, 2000)
8.
Zurück zum Zitat S. Darvish et al., Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ perovskite. J. Electrochem. Soc. 162(9), E134–E140 (2015) S. Darvish et al., Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ perovskite. J. Electrochem. Soc. 162(9), E134–E140 (2015)
9.
Zurück zum Zitat S. Darvish, S.K. Saxena, Y. Zhong, Quantitative analysis of (La0. 8Sr0. 2) 0.98 MnO3±δ electronic conductivity using CALPHAD approach, in Developments in Strategic Ceramic Materials: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites, (Wiley Online Library, Hoboken, 2015) S. Darvish, S.K. Saxena, Y. Zhong, Quantitative analysis of (La0. 8Sr0. 2) 0.98 MnO3±δ electronic conductivity using CALPHAD approach, in Developments in Strategic Ceramic Materials: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites, (Wiley Online Library, Hoboken, 2015)
10.
Zurück zum Zitat Y. Yu et al., Effect of atmospheric CO2 on surface segregation and phase formation in La0.6Sr0.4Co0.2Fe0.8O3 thin films. Appl. Surf. Sci. 323, 71–77 (2014) Y. Yu et al., Effect of atmospheric CO2 on surface segregation and phase formation in La0.6Sr0.4Co0.2Fe0.8O3 thin films. Appl. Surf. Sci. 323, 71–77 (2014)
11.
Zurück zum Zitat Y. Tanaka et al., Improvement of electrical efficiency of solid oxide fuel cells by anode gas recycle. ECS Trans. 30(1), 145–150 (2011) Y. Tanaka et al., Improvement of electrical efficiency of solid oxide fuel cells by anode gas recycle. ECS Trans. 30(1), 145–150 (2011)
12.
Zurück zum Zitat S. Darvish et al., Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int. J. Hydrog. Energy 41(24), 10239–10248 (2016) S. Darvish et al., Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int. J. Hydrog. Energy 41(24), 10239–10248 (2016)
13.
Zurück zum Zitat S. Darvish, S. Gopalan, Y. Zhong, Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ–CO2–O2 system for application in solid oxide fuel cells. J. Power Sources 336, 351 (2016) S. Darvish, S. Gopalan, Y. Zhong, Thermodynamic stability maps for the La0.6Sr0.4Co0.2Fe0.8O3±δ–CO2–O2 system for application in solid oxide fuel cells. J. Power Sources 336, 351 (2016)
14.
Zurück zum Zitat C. Wang et al., Effect of SO2 poisoning on the electrochemical activity of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. J. Electrochem. Soc. 164(6), F514–F524 (2016) C. Wang et al., Effect of SO2 poisoning on the electrochemical activity of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. J. Electrochem. Soc. 164(6), F514–F524 (2016)
15.
Zurück zum Zitat A. Arabacı, M.F. Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram. Int. 38(8), 6509–6515 (2012) A. Arabacı, M.F. Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications. Ceram. Int. 38(8), 6509–6515 (2012)
16.
Zurück zum Zitat F.W. Poulsen, Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3−δ. Solid State Ionics 129(1–4), 145–162 (2000) F.W. Poulsen, Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3−δ. Solid State Ionics 129(1–4), 145–162 (2000)
17.
Zurück zum Zitat X.D. Zhou, H. Anderson, A Global defect chemistry model or p-type mixed ionic and electronic conductors. ECS Trans. 25(2), 2807–2814 (2009) X.D. Zhou, H. Anderson, A Global defect chemistry model or p-type mixed ionic and electronic conductors. ECS Trans. 25(2), 2807–2814 (2009)
18.
Zurück zum Zitat J. Nowotny, M. Rekas, Defect chemistry of (La,Sr)MnO3. J. Am. Ceram. Soc. 80(191914), 67 (1998) J. Nowotny, M. Rekas, Defect chemistry of (La,Sr)MnO3. J. Am. Ceram. Soc. 80(191914), 67 (1998)
19.
Zurück zum Zitat H. Kamata et al., High temperature electrical properties of the perovskite-type oxide La1−XSrXMnO3−d. J. Phys. Chem. Solids 87, 943–950 (1995) H. Kamata et al., High temperature electrical properties of the perovskite-type oxide La1−XSrXMnO3−d. J. Phys. Chem. Solids 87, 943–950 (1995)
20.
Zurück zum Zitat J. Mizusaki et al., Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3. Solid State Ionics 132, 167–180 (2000) J. Mizusaki et al., Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3. Solid State Ionics 132, 167–180 (2000)
21.
Zurück zum Zitat G. Brouwer, A general asymptotic solution of reaction equations common in solid-state chemistry. Philips Res. Rep. 9(5), 366–376 (1954) G. Brouwer, A general asymptotic solution of reaction equations common in solid-state chemistry. Philips Res. Rep. 9(5), 366–376 (1954)
22.
Zurück zum Zitat J.A.M. van Roosmalen, E.H.P. Cordfunke, A new defect model to describe the oxygen deficiency in perovskite-type oxides. J. Solid State Chem. 93(1), 212–219 (1991) J.A.M. van Roosmalen, E.H.P. Cordfunke, A new defect model to describe the oxygen deficiency in perovskite-type oxides. J. Solid State Chem. 93(1), 212–219 (1991)
23.
Zurück zum Zitat I. Yasuda, M. Hishinuma, Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J. Solid State Chem. 123(2), 382–390 (1996) I. Yasuda, M. Hishinuma, Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J. Solid State Chem. 123(2), 382–390 (1996)
24.
Zurück zum Zitat J. Mizusaki et al., Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ. Solid State Ionics 12, 119–124 (1984) J. Mizusaki et al., Nonstoichiometry of the perovskite-type oxide La1−xSrxCrO3−δ. Solid State Ionics 12, 119–124 (1984)
25.
Zurück zum Zitat I. Yasuda, T. Hikita, Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 141(5), 1268–1273 (1994) I. Yasuda, T. Hikita, Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. J. Electrochem. Soc. 141(5), 1268–1273 (1994)
26.
Zurück zum Zitat B.F. Flandermeyer et al., High-temperature stability of magnesium-doped lanthanum chromite. High Temp. Sci. 20(259), 259–269 (1985) B.F. Flandermeyer et al., High-temperature stability of magnesium-doped lanthanum chromite. High Temp. Sci. 20(259), 259–269 (1985)
27.
Zurück zum Zitat J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83(1), 52–60 (1989) J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure. J. Solid State Chem. 83(1), 52–60 (1989)
28.
Zurück zum Zitat J. Mizusaki et al., Nonstoichiometry and defect structure of the perovskite-type oxides La1−XSrxFeO3−δ. J. Solid State Chem. 58(2), 257–266 (1985) J. Mizusaki et al., Nonstoichiometry and defect structure of the perovskite-type oxides La1−XSrxFeO3−δ. J. Solid State Chem. 58(2), 257–266 (1985)
29.
Zurück zum Zitat J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 87(1), 55–63 (1990) J.H. Kuo, H.U. Anderson, D.M. Sparlin, Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 87(1), 55–63 (1990)
30.
Zurück zum Zitat Y.-L. Lee, D. Morgan, Ab initio and empirical defect modeling of LaMnO3±δ for solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys. 14(1), 290–302 (2012) Y.-L. Lee, D. Morgan, Ab initio and empirical defect modeling of LaMnO3±δ for solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys. 14(1), 290–302 (2012)
31.
Zurück zum Zitat B. Hu et al., Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. J. Power Sources 268, 404–413 (2014) B. Hu et al., Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. J. Power Sources 268, 404–413 (2014)
32.
Zurück zum Zitat B. Hu, M.K. Mahapatra, P. Singh, Performance regeneration in lanthanum strontium manganite cathode during exposure to H2O and CO2 containing ambient air atmospheres. J. Ceram. Soc. Jpn. 123(1436), 199–204 (2015) B. Hu, M.K. Mahapatra, P. Singh, Performance regeneration in lanthanum strontium manganite cathode during exposure to H2O and CO2 containing ambient air atmospheres. J. Ceram. Soc. Jpn. 123(1436), 199–204 (2015)
33.
Zurück zum Zitat D. Oh, D. Gostovica, E.D. Wachsman, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. J. Mater. Res. 27(15), 1992–1999 (2012) D. Oh, D. Gostovica, E.D. Wachsman, Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation. J. Mater. Res. 27(15), 1992–1999 (2012)
34.
Zurück zum Zitat L. Zhao et al., Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes of solid oxide fuel cells. J. Mater. Chem. A 2(29), 11114–11123 (2014) L. Zhao et al., Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes of solid oxide fuel cells. J. Mater. Chem. A 2(29), 11114–11123 (2014)
35.
Zurück zum Zitat S.P. Simner et al., Degradation mechanisms of la-Sr-co-Fe-O3 SOFC cathodes. Electrochem. Solid-State Lett. 9(10), A478–A481 (2006) S.P. Simner et al., Degradation mechanisms of la-Sr-co-Fe-O3 SOFC cathodes. Electrochem. Solid-State Lett. 9(10), A478–A481 (2006)
36.
Zurück zum Zitat M. Liu et al., Enhanced performance of LSCF cathode through surface modification. Int. J. Hydrog. Energy 37(10), 8613–8620 (2012) M. Liu et al., Enhanced performance of LSCF cathode through surface modification. Int. J. Hydrog. Energy 37(10), 8613–8620 (2012)
37.
Zurück zum Zitat F.S. Baumann et al., Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 152(10), A2074–A2079 (2005) F.S. Baumann et al., Strong performance improvement of La0.6Sr0.4Co0.8Fe0.2O3 − δ SOFC cathodes by electrochemical activation. J. Electrochem. Soc. 152(10), A2074–A2079 (2005)
38.
Zurück zum Zitat Y. Yu, A.Y. Nikiforov, T.C. Kaspar, J.C. Woicik, K.F. Ludwig, S. Gopalan, U.B. Pal, S.N. Basu, Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3−δ as cathode material for solid oxide fuel cells. J. Power Sources. 333, 247–253 (2016) Y. Yu, A.Y. Nikiforov, T.C. Kaspar, J.C. Woicik, K.F. Ludwig, S. Gopalan, U.B. Pal, S.N. Basu, Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3−δ as cathode material for solid oxide fuel cells. J. Power Sources. 333, 247–253 (2016)
39.
Zurück zum Zitat S. Lau, S. Singhal, Potential electrode/electrolyte interactions in solid oxide fuel cells, in Corrosion’85, (Boston, United States: National Association of Corrosion Engineers 1985) S. Lau, S. Singhal, Potential electrode/electrolyte interactions in solid oxide fuel cells, in Corrosion’85, (Boston, United States: National Association of Corrosion Engineers 1985)
40.
Zurück zum Zitat O. Yamamoto et al., Stability of perovskite oxide electrode with stabilized zirconia, in Electrochemical Society 1989 Fall Meeting (Abstracts), (United States: The Electrochemical Society 1990) O. Yamamoto et al., Stability of perovskite oxide electrode with stabilized zirconia, in Electrochemical Society 1989 Fall Meeting (Abstracts), (United States: The Electrochemical Society 1990)
41.
Zurück zum Zitat G. Stochniol, E. Syskakis, A. Naoumidis, Chemical compatibility between strontium-doped lanthanum manganite and Yttria-stabilized zirconia. J. Am. Ceram. Soc. 78(4), 929–932 (1995) G. Stochniol, E. Syskakis, A. Naoumidis, Chemical compatibility between strontium-doped lanthanum manganite and Yttria-stabilized zirconia. J. Am. Ceram. Soc. 78(4), 929–932 (1995)
42.
Zurück zum Zitat A. Mitterdorfer, L. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)/YSZ system. Solid State Ionics 111(3), 185–218 (1998) A. Mitterdorfer, L. Gauckler, La2Zr2O7 formation and oxygen reduction kinetics of the La0.85Sr0.15MnyO3, O2(g)/YSZ system. Solid State Ionics 111(3), 185–218 (1998)
43.
Zurück zum Zitat K. Wiik et al., Reactions between strontium-substituted lanthanum manganite and Yttria-stabilized zirconia: I, powder samples. J. Am. Ceram. Soc. 82(3), 721–728 (1999) K. Wiik et al., Reactions between strontium-substituted lanthanum manganite and Yttria-stabilized zirconia: I, powder samples. J. Am. Ceram. Soc. 82(3), 721–728 (1999)
44.
Zurück zum Zitat A. Grosjean et al., Reactivity and diffusion between La0.8 Sr0.2 MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples. Solid State Ionics 177(19), 1977–1980 (2006) A. Grosjean et al., Reactivity and diffusion between La0.8 Sr0.2 MnO3 and ZrO2 at interfaces in SOFC cores by TEM analyses on FIB samples. Solid State Ionics 177(19), 1977–1980 (2006)
45.
Zurück zum Zitat J. Labrincha, J. Frade, F. Marques, La2Zr2O7 formed at ceramic electrode/YSZ contacts. J. Mater. Sci. 28(14), 3809–3815 (1993) J. Labrincha, J. Frade, F. Marques, La2Zr2O7 formed at ceramic electrode/YSZ contacts. J. Mater. Sci. 28(14), 3809–3815 (1993)
46.
Zurück zum Zitat C. Brugnoni, U. Ducati, M. Scagliotti, SOFC cathode/electrolyte interface. Part I: reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3. Solid State Ionics 76(3–4), 177–182 (1995) C. Brugnoni, U. Ducati, M. Scagliotti, SOFC cathode/electrolyte interface. Part I: reactivity between La0.85Sr0.15MnO3 and ZrO2-Y2O3. Solid State Ionics 76(3–4), 177–182 (1995)
47.
Zurück zum Zitat H.Y. Lee, S.M. Oh, Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface. Solid State Ionics 90(1–4), 133–140 (1996) H.Y. Lee, S.M. Oh, Origin of cathodic degradation and new phase formation at the La0.9Sr0.1MnO3/YSZ interface. Solid State Ionics 90(1–4), 133–140 (1996)
48.
Zurück zum Zitat N.Q. Minh, Solid oxide fuel cell technology – features and applications. Solid State Ionics 174, 271–277 (2004) N.Q. Minh, Solid oxide fuel cell technology – features and applications. Solid State Ionics 174, 271–277 (2004)
49.
Zurück zum Zitat S. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008) S. Jiang, Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 43(21), 6799–6833 (2008)
50.
Zurück zum Zitat M. Mori et al., Thermal-expansion behaviors and mechanisms for Ca- or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres. J. Electrochem. Soc. 147(4), 1295–1302 (2000) M. Mori et al., Thermal-expansion behaviors and mechanisms for Ca- or Sr-doped lanthanum manganite perovskites under oxidizing atmospheres. J. Electrochem. Soc. 147(4), 1295–1302 (2000)
51.
Zurück zum Zitat A. Hammouche, E. Siebert, A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater. Res. Bull. 24(3), 367–380 (1989) A. Hammouche, E. Siebert, A. Hammou, Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater. Res. Bull. 24(3), 367–380 (1989)
52.
Zurück zum Zitat M. Mori, Effect of B-site doing on thermal cycle shrinkage for La0.8Sr0.2Mn1−xMxO3+δ perovskites (M=Mg, Al, Ti, Mn, Fe, Co, Ni; 0≤x≤0.1). Solid State Ionics 174(1–4), 1–8 (2004) M. Mori, Effect of B-site doing on thermal cycle shrinkage for La0.8Sr0.2Mn1−xMxO3+δ perovskites (M=Mg, Al, Ti, Mn, Fe, Co, Ni; 0≤x≤0.1). Solid State Ionics 174(1–4), 1–8 (2004)
53.
Zurück zum Zitat M. Mori, Mechanisms of thermal expansion and shrinkage of La0.8Sr0.2MnO3+δ perovskites with different densities during thermal cycling in air. J. Electrochem. Soc. 152(4), A732–A739 (2005) M. Mori, Mechanisms of thermal expansion and shrinkage of La0.8Sr0.2MnO3+δ perovskites with different densities during thermal cycling in air. J. Electrochem. Soc. 152(4), A732–A739 (2005)
54.
Zurück zum Zitat B.P. McCarthy et al., Enhanced shrinkage of lanthanum strontium manganite (La0.90Sr0.10MnO3+δ) resulting from thermal and oxygen partial pressure cycling. J. Am. Ceram. Soc. 90(10), 3255–3262 (2007) B.P. McCarthy et al., Enhanced shrinkage of lanthanum strontium manganite (La0.90Sr0.10MnO3+δ) resulting from thermal and oxygen partial pressure cycling. J. Am. Ceram. Soc. 90(10), 3255–3262 (2007)
55.
Zurück zum Zitat B.P. McCarthy et al., Low-temperature densification of lanthanum strontium manganite (La1−xSrxMnO3+δ), x=0.0–0.20. J. Am. Ceram. Soc. 92(8), 1672–1678 (2009) B.P. McCarthy et al., Low-temperature densification of lanthanum strontium manganite (La1−xSrxMnO3+δ), x=0.0–0.20. J. Am. Ceram. Soc. 92(8), 1672–1678 (2009)
56.
Zurück zum Zitat T. Soma, et al., Porous lanthanum manganite sintered bodies and solid oxide fuel cells. U.S. Patent No. 5,432,024 (1995) T. Soma, et al., Porous lanthanum manganite sintered bodies and solid oxide fuel cells. U.S. Patent No. 5,432,024 (1995)
57.
Zurück zum Zitat J. Chevalier et al., The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009) J. Chevalier et al., The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009)
58.
Zurück zum Zitat J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008) J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008)
59.
Zurück zum Zitat C.H. Wang et al., Phase transformation and nanocrystallite growth behavior of 2 mol% yttria-partially stabilized zirconia (2Y-PSZ) powders. Ceram. Int. 39, 5165–5174 (2013) C.H. Wang et al., Phase transformation and nanocrystallite growth behavior of 2 mol% yttria-partially stabilized zirconia (2Y-PSZ) powders. Ceram. Int. 39, 5165–5174 (2013)
60.
Zurück zum Zitat Y. Li et al., Electrical conductivity of zirconia stabilized with yttria and calcia. J. Mater. Sci. Lett. 18, 443–444 (1999) Y. Li et al., Electrical conductivity of zirconia stabilized with yttria and calcia. J. Mater. Sci. Lett. 18, 443–444 (1999)
61.
Zurück zum Zitat A. Nakamura, J.B. Wagner, Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J. Electrochem. Soc. 133, 1542–1548 (1986) A. Nakamura, J.B. Wagner, Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J. Electrochem. Soc. 133, 1542–1548 (1986)
62.
Zurück zum Zitat W. Strickler, W.G. Carlson, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. J. Am. Ceram. Soc. 47, 122–127 (1963) W. Strickler, W.G. Carlson, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. J. Am. Ceram. Soc. 47, 122–127 (1963)
63.
Zurück zum Zitat J. Goff et al., Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59(22), 14202 (1999) J. Goff et al., Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59(22), 14202 (1999)
64.
Zurück zum Zitat R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258, 703–704 (1975) R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258, 703–704 (1975)
65.
Zurück zum Zitat O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide. Z. Anorg. Allg. Chem. 180, 19–41 (1929) O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide. Z. Anorg. Allg. Chem. 180, 19–41 (1929)
66.
Zurück zum Zitat C. Wagner, Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23–24), 265–268 (1943) C. Wagner, Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23–24), 265–268 (1943)
67.
Zurück zum Zitat J.A. Krogstad et al., Effect of yttria content on the zirconia unit cell parameters. J. Am. Ceram. Soc. 94, 4548–4555 (2011) J.A. Krogstad et al., Effect of yttria content on the zirconia unit cell parameters. J. Am. Ceram. Soc. 94, 4548–4555 (2011)
68.
Zurück zum Zitat A. Suresh, M.J. Mayo, W.D. Porter, Thermodynamics for Nanosystems: grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5, 100–109 (2003) A. Suresh, M.J. Mayo, W.D. Porter, Thermodynamics for Nanosystems: grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5, 100–109 (2003)
69.
Zurück zum Zitat J.W. Drazin, R.H.R. Castro, Water adsorption microcalorimetry model: deciphering surface energies and water chemical potentials of nanocrystalline oxides. J. Phys. Chem. C 118, 10131–10142 (2014) J.W. Drazin, R.H.R. Castro, Water adsorption microcalorimetry model: deciphering surface energies and water chemical potentials of nanocrystalline oxides. J. Phys. Chem. C 118, 10131–10142 (2014)
70.
Zurück zum Zitat J.W. Drazin, R.H.R. Castro, Phase stability in nanocrystals: a predictive diagram for yttria-zirconia. J. Am. Ceram. Soc. 1384, 1377–1384 (2015) J.W. Drazin, R.H.R. Castro, Phase stability in nanocrystals: a predictive diagram for yttria-zirconia. J. Am. Ceram. Soc. 1384, 1377–1384 (2015)
71.
Zurück zum Zitat M. Asadikiya et al., Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. 6(21), 17438–17445 (2016) M. Asadikiya et al., Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv. 6(21), 17438–17445 (2016)
72.
Zurück zum Zitat L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic, New York, 1970) L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals (Academic, New York, 1970)
73.
Zurück zum Zitat N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, vol xvi (Pergamon, Oxford, 1998), p. 479 N. Saunders, A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, vol xvi (Pergamon, Oxford, 1998), p. 479
74.
Zurück zum Zitat M. Hillert, The compound energy formalism. J. Alloys Compd. 320(2), 161–176 (2001) M. Hillert, The compound energy formalism. J. Alloys Compd. 320(2), 161–176 (2001)
75.
Zurück zum Zitat K. Hack (ed.), The SGTE Casebook : Thermodynamics at Work, Materials Modelling Series (Institute of Materials, London, 1996) K. Hack (ed.), The SGTE Casebook : Thermodynamics at Work, Materials Modelling Series (Institute of Materials, London, 1996)
76.
Zurück zum Zitat A.T. Dinsdale, SGTE data for pure elements. Calphad 15(4), 317–425 (1991) A.T. Dinsdale, SGTE data for pure elements. Calphad 15(4), 317–425 (1991)
77.
Zurück zum Zitat B. Sundman, J. Agren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42, 297–301 (1981) B. Sundman, J. Agren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solids 42, 297–301 (1981)
78.
Zurück zum Zitat J.O. Andersson et al., A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437–445 (1986) J.O. Andersson et al., A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall. 34, 437–445 (1986)
79.
Zurück zum Zitat A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad 30(1), 33–41 (2006) A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad 30(1), 33–41 (2006)
80.
Zurück zum Zitat M. Yang, Y. Zhong, Z.K. Liu, Defect Analysis and Thermodynamic Modeling of LaCoO3−δ. Solid State Ionics 178, 1072–1032 (2007) M. Yang, Y. Zhong, Z.K. Liu, Defect Analysis and Thermodynamic Modeling of LaCoO3−δ. Solid State Ionics 178, 1072–1032 (2007)
81.
Zurück zum Zitat S.H. Lee et al., Defect chemistry and phase equilibria of (La1−xCax)FeO3−δ thermodynamic modeling. J. Electrochem. Soc. 160(10), F1103–F1108 (2013) S.H. Lee et al., Defect chemistry and phase equilibria of (La1−xCax)FeO3−δ thermodynamic modeling. J. Electrochem. Soc. 160(10), F1103–F1108 (2013)
82.
Zurück zum Zitat M. Yang, Thermodynamic Modeling of La 1−x Sr x CoO 3−d . Diss. Master Thesis (The Pennsylvania State University, 2006) M. Yang, Thermodynamic Modeling of La 1−x Sr x CoO 3−d . Diss. Master Thesis (The Pennsylvania State University, 2006)
83.
Zurück zum Zitat J.E. Saal, Thermodynamic modeling of phase transformations and defects: From cobalt to doped cobaltate perovskites. Diss. The Pennsylvania State University, (The Pennsylvania State University, 2010), p. 268 J.E. Saal, Thermodynamic modeling of phase transformations and defects: From cobalt to doped cobaltate perovskites. Diss. The Pennsylvania State University, (The Pennsylvania State University, 2010), p. 268
84.
Zurück zum Zitat W. Zhang, B. Rasmus, Investigation of degradation mechanisms of LSCF based SOFC cathodes – by CALPHAD modeling and experiments. Diss. Department of Energy Conversion and Storage, (Technical University of Denmark, 2012) W. Zhang, B. Rasmus, Investigation of degradation mechanisms of LSCF based SOFC cathodes – by CALPHAD modeling and experiments. Diss. Department of Energy Conversion and Storage, (Technical University of Denmark, 2012)
85.
Zurück zum Zitat E.P. Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells (Diss. ETH Zurich, 2008) E.P. Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells (Diss. ETH Zurich, 2008)
86.
Zurück zum Zitat F.A. Kroeger, H.J. Vink, Solid State Ionics 3, 307 (1956) F.A. Kroeger, H.J. Vink, Solid State Ionics 3, 307 (1956)
87.
Zurück zum Zitat M. Seppanen, M. Kyto, P. Taskinen, Defect structure and nonstoichiometry of LaCoO3. Scand. J. Metall. 9, 3–11 (1980) M. Seppanen, M. Kyto, P. Taskinen, Defect structure and nonstoichiometry of LaCoO3. Scand. J. Metall. 9, 3–11 (1980)
88.
Zurück zum Zitat M. Hillert, B. Jansson, B. Sundman, Application of the compound-energy model to oxide systems. Z. Met. 79(2), 81–87 (1988) M. Hillert, B. Jansson, B. Sundman, Application of the compound-energy model to oxide systems. Z. Met. 79(2), 81–87 (1988)
89.
Zurück zum Zitat Scientific Group Thermodata Europe (SGTE), Thermodynamic properties of inorganic materials, in Landolt-Boernstein New Series, Group IV, (Springer, Berlin/Heidelberg, 1999) Scientific Group Thermodata Europe (SGTE), Thermodynamic properties of inorganic materials, in Landolt-Boernstein New Series, Group IV, (Springer, Berlin/Heidelberg, 1999)
90.
Zurück zum Zitat A.N. Grundy et al., Assessment of the La-Mn-O system. J. Phase Equilib. Diffus. 26(2), 131–151 (2005) A.N. Grundy et al., Assessment of the La-Mn-O system. J. Phase Equilib. Diffus. 26(2), 131–151 (2005)
91.
Zurück zum Zitat O. Redlich, A.T. Kister, Algebraic representations of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345–348 (1948) O. Redlich, A.T. Kister, Algebraic representations of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40(2), 345–348 (1948)
92.
Zurück zum Zitat M. Asadikiya et al., Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J. Alloys Compd. 699, 1022–1029 (2017) M. Asadikiya et al., Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J. Alloys Compd. 699, 1022–1029 (2017)
93.
Zurück zum Zitat M. Asadikiya et al., The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Additive manufacturing and strategic technologies in advanced ceramics. Ceram. Trans. 258, 185–191 (2016) M. Asadikiya et al., The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Additive manufacturing and strategic technologies in advanced ceramics. Ceram. Trans. 258, 185–191 (2016)
94.
Zurück zum Zitat S. Gupta et al., Phase evolution and electrochemical performance of iron doped lanthanum strontium chromite in oxidizing and reducing atmosphere. Int. J. Hydrog. Energy 42, 6262 (2016) S. Gupta et al., Phase evolution and electrochemical performance of iron doped lanthanum strontium chromite in oxidizing and reducing atmosphere. Int. J. Hydrog. Energy 42, 6262 (2016)
95.
Zurück zum Zitat H. Sabarou, Y. Zhong, Investigation on the phase stability of perovskite in La-Sr-Cr-Fe-O system. Advances in solid oxide fuel cells and electronic ceramics II. Ceram. Eng. Sci. Proc. 37(3), 127–135 (2017) H. Sabarou, Y. Zhong, Investigation on the phase stability of perovskite in La-Sr-Cr-Fe-O system. Advances in solid oxide fuel cells and electronic ceramics II. Ceram. Eng. Sci. Proc. 37(3), 127–135 (2017)
96.
Zurück zum Zitat M. Asadikiya et al., The effect of sintering parameters on spark plasma sintering of B4C. Ceram. Int. 43(14), 11182–11188 (2017) M. Asadikiya et al., The effect of sintering parameters on spark plasma sintering of B4C. Ceram. Int. 43(14), 11182–11188 (2017)
97.
Zurück zum Zitat M. Chen, B. Hallstedt, L.J. Gauckler, Thermodynamic modeling of the ZrO2-YO1.5 system. Solid State Ionics 170, 255–274 (2004) M. Chen, B. Hallstedt, L.J. Gauckler, Thermodynamic modeling of the ZrO2-YO1.5 system. Solid State Ionics 170, 255–274 (2004)
98.
Zurück zum Zitat L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 7, 165–246 (1958) L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 7, 165–246 (1958)
99.
Zurück zum Zitat M. Chen et al., Thermodynamic modeling of the La-Mn-Y-Zr-O system. Calphad 30(4), 489–500 (2006) M. Chen et al., Thermodynamic modeling of the La-Mn-Y-Zr-O system. Calphad 30(4), 489–500 (2006)
100.
Zurück zum Zitat S. Darvish, Y. Zhong, Quantitative defect chemistry analysis of (La1−xCax) yFeO3±δ perovskite. ECS Trans. 78(1), 565–572 (2017) S. Darvish, Y. Zhong, Quantitative defect chemistry analysis of (La1−xCax) yFeO3±δ perovskite. ECS Trans. 78(1), 565–572 (2017)
101.
Zurück zum Zitat M. Barsoum, Fundamentals of Ceramics (Institute of Physics Publ, Bristol, 2003) M. Barsoum, Fundamentals of Ceramics (Institute of Physics Publ, Bristol, 2003)
102.
Zurück zum Zitat R. Casselton, Low field DC conduction in yttria-stabilized zirconia. Phys. Status Solidi A 2(3), 571–585 (1970) R. Casselton, Low field DC conduction in yttria-stabilized zirconia. Phys. Status Solidi A 2(3), 571–585 (1970)
103.
Zurück zum Zitat C. Zhang et al., Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater. Sci. Eng. B 137(1), 24–30 (2007) C. Zhang et al., Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater. Sci. Eng. B 137(1), 24–30 (2007)
104.
Zurück zum Zitat R. Pornprasertsuk et al., Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98(10), 103513 (2005) R. Pornprasertsuk et al., Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98(10), 103513 (2005)
105.
Zurück zum Zitat A. Ioffe, D. Rutman, S. Karpachov, On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim. Acta 23(2), 141–142 (1978) A. Ioffe, D. Rutman, S. Karpachov, On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim. Acta 23(2), 141–142 (1978)
106.
Zurück zum Zitat Z. Lu et al., SrZrO3 formation at the interlayer/electrolyte Interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sintering. J. Electrochem. Soc. 164(10), F3097–F3103 (2017) Z. Lu et al., SrZrO3 formation at the interlayer/electrolyte Interface during (La1−xSrx)1−δCo1−yFeyO3 cathode sintering. J. Electrochem. Soc. 164(10), F3097–F3103 (2017)
107.
Zurück zum Zitat C. Levy et al., Thermodynamic stabilities of La2Zr2O7 and SrZrO3 in SOFC and their relationship with LSM synthesis processes. J. Electrochem. Soc. 157(11), B1597–B1601 (2010) C. Levy et al., Thermodynamic stabilities of La2Zr2O7 and SrZrO3 in SOFC and their relationship with LSM synthesis processes. J. Electrochem. Soc. 157(11), B1597–B1601 (2010)
108.
Zurück zum Zitat S. Darvish et al., Weight loss mechanism of (La0.8Sr0.2)0.98MnO3±δ during thermal cycles. Mechanical Properties and Performance of Engineering Ceramics and Composites X: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites. (John Wiley & Sons, Inc., 2015) S. Darvish et al., Weight loss mechanism of (La0.8Sr0.2)0.98MnO3±δ during thermal cycles. Mechanical Properties and Performance of Engineering Ceramics and Composites X: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites. (John Wiley & Sons, Inc., 2015)
109.
Zurück zum Zitat A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad Comput. Coupling Phase Diagrams Thermochem. 30(1), 33–41 (2006) A.N. Grundy et al., Calculation of defect chemistry using the CALPHAD approach. Calphad Comput. Coupling Phase Diagrams Thermochem. 30(1), 33–41 (2006)
110.
Zurück zum Zitat H. Yokokawa et al., Thermodynamic representation of nonstoichiometric lanthanum manganite. Solid State Ionics 86, 1161–1165 (1996) H. Yokokawa et al., Thermodynamic representation of nonstoichiometric lanthanum manganite. Solid State Ionics 86, 1161–1165 (1996)
111.
Zurück zum Zitat J.O. Andersson et al., THERMO-CALC & DICTRA, computational tools for materials science. Calphad Comput. Coupling Phase Diagrams Thermochem. 26(2), 273–312 (2002) J.O. Andersson et al., THERMO-CALC & DICTRA, computational tools for materials science. Calphad Comput. Coupling Phase Diagrams Thermochem. 26(2), 273–312 (2002)
112.
Zurück zum Zitat S. Gupta, M.K. Mahapatra, P. Singh, Lanthanum chromite based perovskites for oxygen transport membrane. Mater. Sci. Eng. R. Rep. 90, 1–36 (2015) S. Gupta, M.K. Mahapatra, P. Singh, Lanthanum chromite based perovskites for oxygen transport membrane. Mater. Sci. Eng. R. Rep. 90, 1–36 (2015)
113.
Zurück zum Zitat T. Frolov, Y. Mishin, Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 1–10 (2009) T. Frolov, Y. Mishin, Temperature dependence of the surface free energy and surface stress: an atomistic calculation for Cu(110). Phys. Rev. B 79, 1–10 (2009)
Metadaten
Titel
The Application of Computational Thermodynamics to the Cathode-Electrolyte in Solid Oxide Fuel Cells
verfasst von
Shadi Darvish
Mohammad Asadikiya
Mei Yang
Yu Zhong
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-56364-9_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.