Skip to main content

2017 | OriginalPaper | Buchkapitel

10. The Application of Graphene in Biosensors

verfasst von : Ting Li, Zebin Li, Jinhao Zhou, Boan Pan, Xiao Xiao, Zhaojia Guo, Lanhui Wu, Yuanfu Chen

Erschienen in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene sparks great interest to develop and extend its applications with its excellent mechanical, electrical, chemical, physical properties. Especially, its higher sensitivity and stronger selectivity presents exciting and bright prospects for biomedical detection applications. From 2008, piles of teams set foot to study graphene applications in biosensors and significant progress has been made. Here we will introduce the applications of graphene in the measurements of biological molecules and microorganism, which facilitates the diagnosis of related diseases, such as diabetes, coronary heart disease, arteriosclerosis and especially cancer.
This chapter is composed of five sections. In the first section, we introduce the synthesis properties of graphene, which enables readers to gain a better understanding of the synthesis and properties of graphene and the advantages of graphene for biosensing. The second section mainly depicts photoluminescence and Raman imaging, electrochemical sensors for enzymatic bio-sensing, DNA sensing, and immune-sensing, which can be applied in optical imaging methods. In the third section, the biological quantification of cancer biomarkers and cells will be discussed. Particularly electrochemical methods like voltammetry and amperometry will be the focus in the content. Due to the properties, for example, simplicity, high sensitivity and low-cost, they are generally adopted transducing techniques for the development of graphene, which based sensors for bio-sensing. The fourth section will describe the Luminescence Sensors in cancer detection applications. The detection method of other biomarkers will be presented in the fifth section, including glucose, hydrogen peroxide, L-Cysteine, dopamine, lysozyme etc. In the final section, in order to reach the necessary standards for the early detection of biomarkers by providing reliable information concerning the patient disease stage, the graphene based biosensors must be established and used, which is the major challenge.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)CrossRef
2.
Zurück zum Zitat Y.Q. Wu, Y.M. Lin, A.A. Bol, K.A. Jenkins, F.N. Xia, D.B. Farmer, Y. Zhu, P. Avouris, Nature 472, 74 (2011)CrossRef Y.Q. Wu, Y.M. Lin, A.A. Bol, K.A. Jenkins, F.N. Xia, D.B. Farmer, Y. Zhu, P. Avouris, Nature 472, 74 (2011)CrossRef
5.
7.
Zurück zum Zitat W. Fu, M. El Abbassi, T. Hasler, M. Jung, M. Steinacher, M. Calame, C. Schönenberger, G. Puebla-Hellmann, S. Hellmüller, T. Ihn, A. Wallraff, Appl. Phys. Lett. 104, 013102 (2014)CrossRef W. Fu, M. El Abbassi, T. Hasler, M. Jung, M. Steinacher, M. Calame, C. Schönenberger, G. Puebla-Hellmann, S. Hellmüller, T. Ihn, A. Wallraff, Appl. Phys. Lett. 104, 013102 (2014)CrossRef
8.
9.
Zurück zum Zitat D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power, Sources 196, 4873 (2011)CrossRef D.A.C. Brownson, D.K. Kampouris, C.E. Banks, J. Power, Sources 196, 4873 (2011)CrossRef
10.
12.
Zurück zum Zitat Z.Y. Yin, J.X. Zhu, Q.Y. He, X.H. Cao, C.L. Tan, H.Y. Chen, Q.Y. Yan, H. Zhang, Adv. Energy Mater. 4, 1300574 (2014)CrossRef Z.Y. Yin, J.X. Zhu, Q.Y. He, X.H. Cao, C.L. Tan, H.Y. Chen, Q.Y. Yan, H. Zhang, Adv. Energy Mater. 4, 1300574 (2014)CrossRef
13.
Zurück zum Zitat C.K. Huang, Y.X. Ou, Y.Q. Bie, Q. Zhao, D.P. Yu, Appl. Phys. Lett. 98, 263104 (2011)CrossRef C.K. Huang, Y.X. Ou, Y.Q. Bie, Q. Zhao, D.P. Yu, Appl. Phys. Lett. 98, 263104 (2011)CrossRef
14.
Zurück zum Zitat Z.S. Wu, S.F. Pei, W.C. Ren, D.M. Tang, L.B. Gao, B.L. Liu, F. Li, C. Liu, H.M. Cheng, Adv. Mater. 21, 1756 (2009)CrossRef Z.S. Wu, S.F. Pei, W.C. Ren, D.M. Tang, L.B. Gao, B.L. Liu, F. Li, C. Liu, H.M. Cheng, Adv. Mater. 21, 1756 (2009)CrossRef
16.
Zurück zum Zitat X. Huang, X.Y. Qi, F. Boeya, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)CrossRef X. Huang, X.Y. Qi, F. Boeya, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)CrossRef
17.
Zurück zum Zitat X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, H. Zhang, Small 7, 1876 (2011)CrossRef X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, H. Zhang, Small 7, 1876 (2011)CrossRef
18.
Zurück zum Zitat X. Huang, Z.Y. Zeng, Z.X. Fan, J.Q. Liu, H. Zhang, Adv. Mater. 24, 5979 (2012)CrossRef X. Huang, Z.Y. Zeng, Z.X. Fan, J.Q. Liu, H. Zhang, Adv. Mater. 24, 5979 (2012)CrossRef
19.
Zurück zum Zitat J.H. Jung, D.S. Cheon, F. Liu, K.B. Lee, T.S. Seo, Angew. Chem. Int. Ed. 49, 5708 (2010)CrossRef J.H. Jung, D.S. Cheon, F. Liu, K.B. Lee, T.S. Seo, Angew. Chem. Int. Ed. 49, 5708 (2010)CrossRef
20.
Zurück zum Zitat Y. Bo, H. Yang, Y. Hu, T. Yao, S. Huang, Electrochim. Acta 56, 2676 (2011)CrossRef Y. Bo, H. Yang, Y. Hu, T. Yao, S. Huang, Electrochim. Acta 56, 2676 (2011)CrossRef
21.
Zurück zum Zitat A. Kakatkar, T.S. Abhilash, R. De Alba, J.M. Parpia, H.G. Craighead, Nanotechnology 26, 125502 (2015)CrossRef A. Kakatkar, T.S. Abhilash, R. De Alba, J.M. Parpia, H.G. Craighead, Nanotechnology 26, 125502 (2015)CrossRef
22.
Zurück zum Zitat H.Y. Yue, H. Zhang, J. Chang, X. Gao, S. Huang, L.H. Yao, X.Y. Lin, E.J. Guo, Anal. Biochem. 488, 22 (2015)CrossRef H.Y. Yue, H. Zhang, J. Chang, X. Gao, S. Huang, L.H. Yao, X.Y. Lin, E.J. Guo, Anal. Biochem. 488, 22 (2015)CrossRef
23.
Zurück zum Zitat U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanoscale 7, 6999 (2015)CrossRef U. Patil, S.C. Lee, S. Kulkarni, J.S. Sohn, M.S. Nam, S. Han, S.C. Jun, Nanoscale 7, 6999 (2015)CrossRef
24.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRef
26.
29.
Zurück zum Zitat M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, P. Kim, Phys. Status Solidi B 244, 4134 (2007)CrossRef M. Han, B. Ozyilmaz, Y. Zhang, P. Jarillo-Herero, P. Kim, Phys. Status Solidi B 244, 4134 (2007)CrossRef
30.
Zurück zum Zitat H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Z. Naturforsch. 17, 150 (1962)CrossRef H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Z. Naturforsch. 17, 150 (1962)CrossRef
31.
32.
Zurück zum Zitat W.A. de Heer, C. Berger, X.S. Wu, P.N. First, E.H. Conrad, X.B. Li, T.B. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Solid State Commun. 143, 92 (2007)CrossRef W.A. de Heer, C. Berger, X.S. Wu, P.N. First, E.H. Conrad, X.B. Li, T.B. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Solid State Commun. 143, 92 (2007)CrossRef
33.
34.
Zurück zum Zitat S. Shivaraman, R.A. Barton, X. Yu, J. Alden, L. Herman, M.V.S. Chandrashekhar, J. Park, P.L. McEuen, J.M. Parpia, H.G. Craighead, M.G. Spencer, Nano Lett. 9, 3100 (2009)CrossRef S. Shivaraman, R.A. Barton, X. Yu, J. Alden, L. Herman, M.V.S. Chandrashekhar, J. Park, P.L. McEuen, J.M. Parpia, H.G. Craighead, M.G. Spencer, Nano Lett. 9, 3100 (2009)CrossRef
35.
Zurück zum Zitat W.C. Ren, L.B. Gao, L.P. Ma, H.M. Cheng, New Carbon Mater. 26, 71 (2011) W.C. Ren, L.B. Gao, L.P. Ma, H.M. Cheng, New Carbon Mater. 26, 71 (2011)
36.
Zurück zum Zitat X.C. Dong, P. Wang, W.J. Fang, C.Y. Su, Y.H. Chen, L.J. Li, W. Huang, P. Chen, Carbon 49, 3672 (2011)CrossRef X.C. Dong, P. Wang, W.J. Fang, C.Y. Su, Y.H. Chen, L.J. Li, W. Huang, P. Chen, Carbon 49, 3672 (2011)CrossRef
37.
Zurück zum Zitat A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)CrossRef A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)CrossRef
38.
Zurück zum Zitat X. Wang, G. Sun, P. Routh, D. Kim, W. Huang, P. Chen, Chem. Soc. Rev 43, 7067 (2014)CrossRef X. Wang, G. Sun, P. Routh, D. Kim, W. Huang, P. Chen, Chem. Soc. Rev 43, 7067 (2014)CrossRef
39.
Zurück zum Zitat X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163 (2011)CrossRef X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163 (2011)CrossRef
40.
Zurück zum Zitat X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9, 3433–3488 (2013)CrossRef X. Cao, Y. Shi, W. Shi, X. Rui, Q. Yan, J. Kong, H. Zhang, Small 9, 3433–3488 (2013)CrossRef
41.
Zurück zum Zitat X.H. Cao, Z.Y. Zeng, W.H. Shi, P. Yep, Q.Y. Yan, H. Zhang, Small 9, 1703 (2013)CrossRef X.H. Cao, Z.Y. Zeng, W.H. Shi, P. Yep, Q.Y. Yan, H. Zhang, Small 9, 1703 (2013)CrossRef
42.
Zurück zum Zitat X.H. Cao, B. Zheng, X.H. Rui, W.H. Shi, Q.Y. Yan, H. Zhang, Angew. Chem. Int. Ed. 53, 1404 (2014)CrossRef X.H. Cao, B. Zheng, X.H. Rui, W.H. Shi, Q.Y. Yan, H. Zhang, Angew. Chem. Int. Ed. 53, 1404 (2014)CrossRef
43.
Zurück zum Zitat W.J. Zhou, X.H. Cao, Z.Y. Zeng, W.H. Shi, Y.Y. Zhu, Q.Y. Yan, H. Liu, J.Y. Wang, H. Zhang, Energy. Environ. Sci. 6, 2216 (2013)CrossRef W.J. Zhou, X.H. Cao, Z.Y. Zeng, W.H. Shi, Y.Y. Zhu, Q.Y. Yan, H. Liu, J.Y. Wang, H. Zhang, Energy. Environ. Sci. 6, 2216 (2013)CrossRef
44.
Zurück zum Zitat X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano. 6, 3206 (2012)CrossRef X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano. 6, 3206 (2012)CrossRef
45.
Zurück zum Zitat X.C. Dong, J. Chen, Y.W. Ma, J. Wang, M.B. Chan-Park, X.M. Liu, L.H. Wang, W. Huang, P. Chen, Chem. Comum. 48, 10660 (2012)CrossRef X.C. Dong, J. Chen, Y.W. Ma, J. Wang, M.B. Chan-Park, X.M. Liu, L.H. Wang, W. Huang, P. Chen, Chem. Comum. 48, 10660 (2012)CrossRef
46.
Zurück zum Zitat Z.P. Chen, F. Houshmand, W.C. Ren, Y. Peles, H.M. Cheng, N. Koratkar, Small 9, 75 (2013)CrossRef Z.P. Chen, F. Houshmand, W.C. Ren, Y. Peles, H.M. Cheng, N. Koratkar, Small 9, 75 (2013)CrossRef
47.
Zurück zum Zitat Y.C. Yong, X.C. Dong, M.B. Chan-Park, H. Song, P. Chen, ACS Nano. 6, 2394 (2012)CrossRef Y.C. Yong, X.C. Dong, M.B. Chan-Park, H. Song, P. Chen, ACS Nano. 6, 2394 (2012)CrossRef
48.
Zurück zum Zitat B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, X. Dong, Graphene Sens. 10(20), 4042–4065 (2014) B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, X. Dong, Graphene Sens. 10(20), 4042–4065 (2014)
50.
Zurück zum Zitat F.M.P. Tonelli, V.A.M. Goulart, K.N. Gomes, M.S. Ladeira, A.K. Santos, E. Lorencon, L.O. Ladeira, R.R. Resende, Nanomedicine-UK 10, 2423 (2015)CrossRef F.M.P. Tonelli, V.A.M. Goulart, K.N. Gomes, M.S. Ladeira, A.K. Santos, E. Lorencon, L.O. Ladeira, R.R. Resende, Nanomedicine-UK 10, 2423 (2015)CrossRef
51.
Zurück zum Zitat Z. Wang, P. Li, Y. Chen, J. He, J. Liu, W. Zhang, Y. Li, J. Power, Sources 263, 246 (2014)CrossRef Z. Wang, P. Li, Y. Chen, J. He, J. Liu, W. Zhang, Y. Li, J. Power, Sources 263, 246 (2014)CrossRef
52.
Zurück zum Zitat Z. Wang, P. Li, Y. Chen, J. Liu, H. Tian, J. Zhou, W. Zhang, Y. Li, J. Mater. Chem. C. 2, 7396 (2014)CrossRef Z. Wang, P. Li, Y. Chen, J. Liu, H. Tian, J. Zhou, W. Zhang, Y. Li, J. Mater. Chem. C. 2, 7396 (2014)CrossRef
53.
Zurück zum Zitat Z. Wang, P. Li, Y. Chen, J. He, W. Zhang, O.G. Schmidt, Y. Li, Nanoscale 6, 7281 (2014)CrossRef Z. Wang, P. Li, Y. Chen, J. He, W. Zhang, O.G. Schmidt, Y. Li, Nanoscale 6, 7281 (2014)CrossRef
54.
Zurück zum Zitat J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 3, 18605 (2015)CrossRef J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, J. Mater. Chem. A 3, 18605 (2015)CrossRef
55.
Zurück zum Zitat J. He, Y. Chen, W. Lv, K. Wen, Z. Wang, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 10, 8837 (2016)CrossRef J. He, Y. Chen, W. Lv, K. Wen, Z. Wang, W. Zhang, Y. Li, W. Qin, W. He, ACS Nano 10, 8837 (2016)CrossRef
56.
Zurück zum Zitat M.R. Stratton, P.J. Campbell, P.A. Futreal, The cancer genome. Nature 458, 719–724 (2009)CrossRef M.R. Stratton, P.J. Campbell, P.A. Futreal, The cancer genome. Nature 458, 719–724 (2009)CrossRef
57.
Zurück zum Zitat T.L. Serafim, P.J. Oliveira, in Tumor Metabolome Targeting and Drug Development, ed by S. Kanner. Regulating mitochondrial respiration in cancer (Springer New York, New York, NY, 2014), pp. 29–73CrossRef T.L. Serafim, P.J. Oliveira, in Tumor Metabolome Targeting and Drug Development, ed by S. Kanner. Regulating mitochondrial respiration in cancer (Springer New York, New York, NY, 2014), pp. 29–73CrossRef
58.
Zurück zum Zitat Q. Li, L. Liu, J.-W. Liu, J.-H. Jiang, R.-Q. Yu, X. Chu, Nanomaterial-based fluorescent probes for live-cell imaging. TrAC Trends Anal. Chem. 58, 130–144 (2014)CrossRef Q. Li, L. Liu, J.-W. Liu, J.-H. Jiang, R.-Q. Yu, X. Chu, Nanomaterial-based fluorescent probes for live-cell imaging. TrAC Trends Anal. Chem. 58, 130–144 (2014)CrossRef
59.
Zurück zum Zitat S.W. Perry, R.M. Burke, E.B. Brown, Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann. Biomed. Eng. 40, 277–291 (2012)CrossRef S.W. Perry, R.M. Burke, E.B. Brown, Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann. Biomed. Eng. 40, 277–291 (2012)CrossRef
60.
Zurück zum Zitat H. Yuan, J.K. Register, H.N. Wang, A.M. Fales, Y. Liu, T. Vo-Dinh, Plasmatic Nano-probes for intracellular sensing and imaging. Anal. Biological Anal. Chem. 405, 6165–6180 (2013)CrossRef H. Yuan, J.K. Register, H.N. Wang, A.M. Fales, Y. Liu, T. Vo-Dinh, Plasmatic Nano-probes for intracellular sensing and imaging. Anal. Biological Anal. Chem. 405, 6165–6180 (2013)CrossRef
61.
Zurück zum Zitat L. Baù, P. Tecilla, F. Mancin, Sensing with fluorescent nanoparticles. Nanoscale 3, 121–133 (2011)CrossRef L. Baù, P. Tecilla, F. Mancin, Sensing with fluorescent nanoparticles. Nanoscale 3, 121–133 (2011)CrossRef
62.
Zurück zum Zitat J.L. Li, B. Tang, B. Yuan, L. Sun, X.G. Wang, A review of optical imaging and therapy using Nano-sized graphene and graphene oxide. Biomaterials 34, 9519–9534 (2013)CrossRef J.L. Li, B. Tang, B. Yuan, L. Sun, X.G. Wang, A review of optical imaging and therapy using Nano-sized graphene and graphene oxide. Biomaterials 34, 9519–9534 (2013)CrossRef
63.
Zurück zum Zitat J.M. Yoo, J.H. Kang, B.H. Hong, Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44, 4835–4852 (2015)CrossRef J.M. Yoo, J.H. Kang, B.H. Hong, Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44, 4835–4852 (2015)CrossRef
64.
Zurück zum Zitat N. Abdullah Al, J.E. Lee, I. In, H. Lee, K.D. Lee, J.H. Jeong, S.Y. Park, Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 10, 3736–3744 (2013)CrossRef N. Abdullah Al, J.E. Lee, I. In, H. Lee, K.D. Lee, J.H. Jeong, S.Y. Park, Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 10, 3736–3744 (2013)CrossRef
65.
Zurück zum Zitat J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, et al., Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)CrossRef J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, et al., Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)CrossRef
66.
Zurück zum Zitat X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008)CrossRef X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008)CrossRef
67.
Zurück zum Zitat J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5 (2014) J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang, Q. Jia, G. Niu, X. Huang, H. Zhou, et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5 (2014)
68.
Zurück zum Zitat X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Coll. Surf. B Bio-inters. 122, 638–644 (2014)CrossRef X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Coll. Surf. B Bio-inters. 122, 638–644 (2014)CrossRef
69.
Zurück zum Zitat M.P. Mattson, Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000)CrossRef M.P. Mattson, Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129 (2000)CrossRef
70.
Zurück zum Zitat M. Vila, S. Przedborski, Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neuroscience. 4, 365–375 (2003)CrossRef M. Vila, S. Przedborski, Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neuroscience. 4, 365–375 (2003)CrossRef
71.
Zurück zum Zitat H. Lecoeur, Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp.Cell Res. 277, 1–14 (2002)CrossRef H. Lecoeur, Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp.Cell Res. 277, 1–14 (2002)CrossRef
72.
Zurück zum Zitat Y. Gavrieli, Y. Sherman, S.A. Ben-Sasson, Identification of programmed cell death in situ via specific label-ingot nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992)CrossRef Y. Gavrieli, Y. Sherman, S.A. Ben-Sasson, Identification of programmed cell death in situ via specific label-ingot nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992)CrossRef
73.
Zurück zum Zitat P. Roy, A.P. Periasamy, C.Y. Lin, G.M. Her, W.J. Chiu, C.L. Li, C.L. Shu, C.C. Huang, C.T. Liang, H.T. Chang, Photo-luminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale 7, 2504–2510 (2015)CrossRef P. Roy, A.P. Periasamy, C.Y. Lin, G.M. Her, W.J. Chiu, C.L. Li, C.L. Shu, C.C. Huang, C.T. Liang, H.T. Chang, Photo-luminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale 7, 2504–2510 (2015)CrossRef
74.
Zurück zum Zitat Z.M. Liu, Z.Y. Guo, H.Q. Zhong, X.C. Qin, M.M. Wan, B.W. Yang, Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 15, 2961–2966 (2013)CrossRef Z.M. Liu, Z.Y. Guo, H.Q. Zhong, X.C. Qin, M.M. Wan, B.W. Yang, Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Phys. Chem. Chem. Phys. 15, 2961–2966 (2013)CrossRef
75.
Zurück zum Zitat B. Kann, H.L. Offerhaus, M. Windbergs, C. Otto, Raman microscopy for cellular investigations—from single cell imaging to drug carrier uptake visualization. Adv. Drug Deliv. Rev. 89, 71–90 (2015)CrossRef B. Kann, H.L. Offerhaus, M. Windbergs, C. Otto, Raman microscopy for cellular investigations—from single cell imaging to drug carrier uptake visualization. Adv. Drug Deliv. Rev. 89, 71–90 (2015)CrossRef
76.
Zurück zum Zitat J.E. Aubin, Auto-fluorescence of viable cultured mammalian cells. J. History-chem. Cysto-chem. 27, 36–43 (1979) J.E. Aubin, Auto-fluorescence of viable cultured mammalian cells. J. History-chem. Cysto-chem. 27, 36–43 (1979)
77.
Zurück zum Zitat L. Song, E.J. Hennink, I.T. Young, H.J. Tanke, Photo-bleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995)CrossRef L. Song, E.J. Hennink, I.T. Young, H.J. Tanke, Photo-bleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995)CrossRef
78.
Zurück zum Zitat C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, S.S. Gambhir, Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–2805 (2008)CrossRef C. Zavaleta, A. de la Zerda, Z. Liu, S. Keren, Z. Cheng, M. Schipper, X. Chen, H. Dai, S.S. Gambhir, Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–2805 (2008)CrossRef
79.
Zurück zum Zitat K. Ock, W.I. Jeon, E.O. Ganbold, M. Kim, J. Park, J.H. Seo, K. Cho, S.W. Joo, S.Y. Lee, Real-time monitoring of glutathione-triggered thiol-purine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal. Chem. 84, 2172–2178 (2012)CrossRef K. Ock, W.I. Jeon, E.O. Ganbold, M. Kim, J. Park, J.H. Seo, K. Cho, S.W. Joo, S.Y. Lee, Real-time monitoring of glutathione-triggered thiol-purine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal. Chem. 84, 2172–2178 (2012)CrossRef
80.
Zurück zum Zitat E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)CrossRef E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007)CrossRef
81.
Zurück zum Zitat X. Guo, Z. Guo, Y. Jin, Z. Liu, W. Zhang, D. Huang, Silver-gold core-shell nanoparticles containing methylene blue as seers labels for probing and imaging of live cells. Micro-chem. Acta 178, 229–236 (2012)CrossRef X. Guo, Z. Guo, Y. Jin, Z. Liu, W. Zhang, D. Huang, Silver-gold core-shell nanoparticles containing methylene blue as seers labels for probing and imaging of live cells. Micro-chem. Acta 178, 229–236 (2012)CrossRef
82.
Zurück zum Zitat S. Yu, X. Cao, M. Yu, Electrochemical immunoassay based on gold nanoparticles and reduced graphene oxide functionalized carbon ionic liquid electrode. Micro-chem. J. 103, 125–130 (2012)CrossRef S. Yu, X. Cao, M. Yu, Electrochemical immunoassay based on gold nanoparticles and reduced graphene oxide functionalized carbon ionic liquid electrode. Micro-chem. J. 103, 125–130 (2012)CrossRef
83.
Zurück zum Zitat W. Lu, J. Ge, L. Tao, X. Cao, J. Dong, W. Qian, Large-scale synthesis of ultrathin au-pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immune-sensor. Electro-chemistry. Acta 130, 335–343 (2014)CrossRef W. Lu, J. Ge, L. Tao, X. Cao, J. Dong, W. Qian, Large-scale synthesis of ultrathin au-pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immune-sensor. Electro-chemistry. Acta 130, 335–343 (2014)CrossRef
84.
Zurück zum Zitat J.M. Han, J. Ma, Z.F. Ma, One-step synthesis of graphene oxide-thionine-au nanocomposites and its application for electrochemical immune-sensing. Biosens. Bio-electron. 47, 243–247 (2013)CrossRef J.M. Han, J. Ma, Z.F. Ma, One-step synthesis of graphene oxide-thionine-au nanocomposites and its application for electrochemical immune-sensing. Biosens. Bio-electron. 47, 243–247 (2013)CrossRef
85.
Zurück zum Zitat S. Samanman, A. Numnuam, W. Limbut, P. Kanatharana, P. Thavarungkul, Highly-sensitive label-free electrochemical carcinoembryonic antigen immune-sensor based on a novel au nanoparticles-graphene-chitosan nanocomposite cryogen electrode. Anal. Chem. Acta 853, 521–532 (2015)CrossRef S. Samanman, A. Numnuam, W. Limbut, P. Kanatharana, P. Thavarungkul, Highly-sensitive label-free electrochemical carcinoembryonic antigen immune-sensor based on a novel au nanoparticles-graphene-chitosan nanocomposite cryogen electrode. Anal. Chem. Acta 853, 521–532 (2015)CrossRef
86.
Zurück zum Zitat X. Jiang, Y. Chai, R. Yuan, Y. Cao, Y. Chen, H. Wang, X. Gan, An ultrasensitive luminal cathodic electro-chemiluminescence immune-sensor based on glucose oxidase and nanocomposites: Graphene-carbon nanotubes and gold-platinum alloy. Anal. Chem. Acta 783, 49–55 (2013)CrossRef X. Jiang, Y. Chai, R. Yuan, Y. Cao, Y. Chen, H. Wang, X. Gan, An ultrasensitive luminal cathodic electro-chemiluminescence immune-sensor based on glucose oxidase and nanocomposites: Graphene-carbon nanotubes and gold-platinum alloy. Anal. Chem. Acta 783, 49–55 (2013)CrossRef
87.
Zurück zum Zitat S. Kumar, S. Kumar, S. Srivastava, B.K. Yadav, S.H. Lee, J.G. Sharma, D.C. Doval, B.D. Malhotra, Reduced graphene oxide modified smart conducting paper for cancer biosensor. Bio-sens. Bio-electron. 73, 114–122 (2015) S. Kumar, S. Kumar, S. Srivastava, B.K. Yadav, S.H. Lee, J.G. Sharma, D.C. Doval, B.D. Malhotra, Reduced graphene oxide modified smart conducting paper for cancer biosensor. Bio-sens. Bio-electron. 73, 114–122 (2015)
88.
Zurück zum Zitat X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, D. Tang, Sandwich-type immune-sensors and immunoassays exploiting nanostructure labels: a review. Anal. Chem. Acta 758, 1–18 (2013)CrossRef X. Pei, B. Zhang, J. Tang, B. Liu, W. Lai, D. Tang, Sandwich-type immune-sensors and immunoassays exploiting nanostructure labels: a review. Anal. Chem. Acta 758, 1–18 (2013)CrossRef
89.
Zurück zum Zitat J. Huang, J. Tian, Y. Zhao, S. Zhao, Ag/au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens. Actuators B-Chem. 206, 570–576 (2015)CrossRef J. Huang, J. Tian, Y. Zhao, S. Zhao, Ag/au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens. Actuators B-Chem. 206, 570–576 (2015)CrossRef
90.
Zurück zum Zitat B. Jin, P. Wang, H. Mao, B. Hu, H. Zhang, Z. Cheng, Z. Wu, X. Bian, C. Jia, F. Jing, et al., Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Bio-sens. Bio-electron. 55, 464–469 (2014) B. Jin, P. Wang, H. Mao, B. Hu, H. Zhang, Z. Cheng, Z. Wu, X. Bian, C. Jia, F. Jing, et al., Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Bio-sens. Bio-electron. 55, 464–469 (2014)
91.
Zurück zum Zitat T. Li, M. Yang, H. Li, Label-free electrochemical detection of cancer marker based on graphene-cobalt hexa-cyanoferrate nanocomposite. J. Electro-Anal. Chem. 655, 50–55 (2011)CrossRef T. Li, M. Yang, H. Li, Label-free electrochemical detection of cancer marker based on graphene-cobalt hexa-cyanoferrate nanocomposite. J. Electro-Anal. Chem. 655, 50–55 (2011)CrossRef
92.
Zurück zum Zitat H.D. Jang, S.K. Kim, H. Chang, J.-W. Choi, 3D label-free prostate specific antigen (PSA) immune-sensor based on graphene-gold composites. Bio-sens. Bio-electron. 63, 546–551 (2015) H.D. Jang, S.K. Kim, H. Chang, J.-W. Choi, 3D label-free prostate specific antigen (PSA) immune-sensor based on graphene-gold composites. Bio-sens. Bio-electron. 63, 546–551 (2015)
93.
Zurück zum Zitat Y. Li, J. Han, R. Chen, X. Ren, Q. Wei, Label electrochemical immune-sensor for prostate-specific antigen based on graphene and silver hybridized mesoporous silica. Anal. Bio-chem. 469, 76–82 (2015) Y. Li, J. Han, R. Chen, X. Ren, Q. Wei, Label electrochemical immune-sensor for prostate-specific antigen based on graphene and silver hybridized mesoporous silica. Anal. Bio-chem. 469, 76–82 (2015)
94.
Zurück zum Zitat F. Yang, Z. Yang, Y. Zhuo, Y. Chai, R. Yuan, Ultrasensitive electrochemical immune-sensor for carbohydrate antigen 19-9 using au/porous graphene nanocomposites as platform and au and pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Bio-sens. Bio-electron. 66, 356–362 (2015) F. Yang, Z. Yang, Y. Zhuo, Y. Chai, R. Yuan, Ultrasensitive electrochemical immune-sensor for carbohydrate antigen 19-9 using au/porous graphene nanocomposites as platform and au and pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Bio-sens. Bio-electron. 66, 356–362 (2015)
95.
Zurück zum Zitat A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5, 5426–5434 (2013)CrossRef A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinitskii, Highly selective gas sensor arrays based on thermally reduced graphene oxide. Nanoscale 5, 5426–5434 (2013)CrossRef
96.
Zurück zum Zitat L. Zhao, Q. Wei, H. Wu, J. Dou, H. Li, Ionic liquid functionalized graphene based immune-sensor for sensitive detection of carbohydrate antigen 15-3 integrated with cd2+−functionalized Nano-porous TiO2 as labels. Bio-sens. Bio-electron. 59, 75–80 (2014) L. Zhao, Q. Wei, H. Wu, J. Dou, H. Li, Ionic liquid functionalized graphene based immune-sensor for sensitive detection of carbohydrate antigen 15-3 integrated with cd2+−functionalized Nano-porous TiO2 as labels. Bio-sens. Bio-electron. 59, 75–80 (2014)
97.
Zurück zum Zitat F. Toledo, G.M. Wahl, Regulating the p 53 pathway: In vitro hypotheses, in vivo VERITAS. Nat. Rev. Cancer 6, 909–923 (2006)CrossRef F. Toledo, G.M. Wahl, Regulating the p 53 pathway: In vitro hypotheses, in vivo VERITAS. Nat. Rev. Cancer 6, 909–923 (2006)CrossRef
98.
Zurück zum Zitat A.M. Bode, Z.G. Dong, Post-translational modification of p 53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004)CrossRef A.M. Bode, Z.G. Dong, Post-translational modification of p 53 in tumorigenesis. Nat. Rev. Cancer 4, 793–805 (2004)CrossRef
99.
Zurück zum Zitat D. Du, L.M. Wang, Y.Y. Shao, J. Wang, M.H. Engelhard, Y.H. Lin, Functionalized graphene oxide as a Nano-carrier in a multi-enzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p 53 (s392). Anal. Chem. 83, 746–752 (2011)CrossRef D. Du, L.M. Wang, Y.Y. Shao, J. Wang, M.H. Engelhard, Y.H. Lin, Functionalized graphene oxide as a Nano-carrier in a multi-enzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p 53 (s392). Anal. Chem. 83, 746–752 (2011)CrossRef
100.
Zurück zum Zitat Y.Y. Xie, A.G. Chen, D. Du, Y.H. Lin, Graphene-based immune sensor for electrochemical quantification of phosphorylated p 53 (s15). Anal. Chem. Acta 699, 44–48 (2011)CrossRef Y.Y. Xie, A.G. Chen, D. Du, Y.H. Lin, Graphene-based immune sensor for electrochemical quantification of phosphorylated p 53 (s15). Anal. Chem. Acta 699, 44–48 (2011)CrossRef
101.
Zurück zum Zitat N. Ferrara, H.P. Gerber, J. Le Counter, The biology of verge and its receptors. Nat. Med. 9, 669–676 (2003)CrossRef N. Ferrara, H.P. Gerber, J. Le Counter, The biology of verge and its receptors. Nat. Med. 9, 669–676 (2003)CrossRef
102.
Zurück zum Zitat C.-W. Lin, K.-C. Wei, S.-S. Liao, C.-Y. Huang, C.-L. Sun, P.-J. Wu, Y.-J. Lu, H.-W. Yang, C.-C.M. Ma, A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Bio-sens. Bio-electron. 67, 431–437 (2015) C.-W. Lin, K.-C. Wei, S.-S. Liao, C.-Y. Huang, C.-L. Sun, P.-J. Wu, Y.-J. Lu, H.-W. Yang, C.-C.M. Ma, A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Bio-sens. Bio-electron. 67, 431–437 (2015)
103.
Zurück zum Zitat N. Gan, J.G. Hou, F.T. Hu, Y.T. Cao, T.H. Li, L. Zheng, J. Wang, Sandwich-type electro-chemiluminescent immune-sensor based on PDDA-g and lu-au composite for alpha-fetoprotein detection. Int. J. Electro-chem. Sci. 6, 5146–5160 (2011) N. Gan, J.G. Hou, F.T. Hu, Y.T. Cao, T.H. Li, L. Zheng, J. Wang, Sandwich-type electro-chemiluminescent immune-sensor based on PDDA-g and lu-au composite for alpha-fetoprotein detection. Int. J. Electro-chem. Sci. 6, 5146–5160 (2011)
104.
Zurück zum Zitat Y. Zhuo, M. Zhao, W.J. Qiu, G.F. Gui, Y.Q. Chai, R. Yuan, Supramolecular assembly of beryline derivatives on au functionalized graphene for sensitivity enhancement of electro-chemiluminescent immune-sensor. J. Electro-anal. Chem. 709, 106–110 (2013)CrossRef Y. Zhuo, M. Zhao, W.J. Qiu, G.F. Gui, Y.Q. Chai, R. Yuan, Supramolecular assembly of beryline derivatives on au functionalized graphene for sensitivity enhancement of electro-chemiluminescent immune-sensor. J. Electro-anal. Chem. 709, 106–110 (2013)CrossRef
105.
Zurück zum Zitat D.T. Puerta, J.A. Lewis, S.M.J. Cohen, Am. Chem. Soc. 126, 8388–8389 (2004)CrossRef D.T. Puerta, J.A. Lewis, S.M.J. Cohen, Am. Chem. Soc. 126, 8388–8389 (2004)CrossRef
106.
Zurück zum Zitat P. Li, B. Zhang, T. Cui, Towards intrinsic graphene biosensor: a label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Bio-sens. Bio-electron. 72, 168–174 (2015) P. Li, B. Zhang, T. Cui, Towards intrinsic graphene biosensor: a label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection. Bio-sens. Bio-electron. 72, 168–174 (2015)
107.
Zurück zum Zitat A. Ambrosi, M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 12, 8944–8948 (2010)CrossRef A. Ambrosi, M. Pumera, Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 12, 8944–8948 (2010)CrossRef
108.
Zurück zum Zitat P.A. Rasheed, N. Sand-Haran, Graphene-dna electrochemical sensor for the sensitive detection of brca1 gene. Sens. Actuators B-Chem. 204, 777–782 (2014)CrossRef P.A. Rasheed, N. Sand-Haran, Graphene-dna electrochemical sensor for the sensitive detection of brca1 gene. Sens. Actuators B-Chem. 204, 777–782 (2014)CrossRef
109.
Zurück zum Zitat R. Sifri, S. Gang-ad-Harappa, L.S. Acheson, Identifying and testing for hereditary susceptibility to common cancers. Ca-a Cancer J. Clin. 54, 309–326 (2004)CrossRef R. Sifri, S. Gang-ad-Harappa, L.S. Acheson, Identifying and testing for hereditary susceptibility to common cancers. Ca-a Cancer J. Clin. 54, 309–326 (2004)CrossRef
110.
Zurück zum Zitat L. Wang, E. Hua, M. Liang, C. Ma, Z. Liu, S. Sheng, M. Liu, G. Xie, W. Feng, Graphene sheets, polyaniline and aunts based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Bio-sens. Bio-electron. 51, 201–207 (2014) L. Wang, E. Hua, M. Liang, C. Ma, Z. Liu, S. Sheng, M. Liu, G. Xie, W. Feng, Graphene sheets, polyaniline and aunts based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Bio-sens. Bio-electron. 51, 201–207 (2014)
111.
Zurück zum Zitat R.E. Champlin, D.W. Golde, Chronic myelogenous leukemia: recent advances. Blood 65, 1039–1047 (1985) R.E. Champlin, D.W. Golde, Chronic myelogenous leukemia: recent advances. Blood 65, 1039–1047 (1985)
112.
Zurück zum Zitat C.X. Guo, X.T. Zheng, Z.S. Lu, X.W. Lou, C.M. Li, Bio-interface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 22, 5164–5167 (2010)CrossRef C.X. Guo, X.T. Zheng, Z.S. Lu, X.W. Lou, C.M. Li, Bio-interface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 22, 5164–5167 (2010)CrossRef
113.
Zurück zum Zitat Y.F. Wu, P. Xue, Y.J. Kang, K.M. Hui, Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Anal. Chem. 85, 3166–3173 (2013)CrossRef Y.F. Wu, P. Xue, Y.J. Kang, K.M. Hui, Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Anal. Chem. 85, 3166–3173 (2013)CrossRef
114.
Zurück zum Zitat J.J. Castillo, W.E. Svendsen, N. Rozlosnik, P. Escobar, F. Martineza, J. Castillo-Leon, Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138, 1026–1031 (2013)CrossRef J.J. Castillo, W.E. Svendsen, N. Rozlosnik, P. Escobar, F. Martineza, J. Castillo-Leon, Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138, 1026–1031 (2013)CrossRef
115.
Zurück zum Zitat L.Y. Feng, Y. Chen, J.S. Ren, X.G. Qu, A graphene functionalized electrochemical apt sensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011)CrossRef L.Y. Feng, Y. Chen, J.S. Ren, X.G. Qu, A graphene functionalized electrochemical apt sensor for selective label-free detection of cancer cells. Biomaterials 32, 2930–2937 (2011)CrossRef
116.
Zurück zum Zitat Y.F. Xia, P.Y. Gao, Y. Bo, W.Q. Wang, S.S. Huang, Immunoassay for skov-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Micro-Chem. Acta 179, 201–207 (2012)CrossRef Y.F. Xia, P.Y. Gao, Y. Bo, W.Q. Wang, S.S. Huang, Immunoassay for skov-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Micro-Chem. Acta 179, 201–207 (2012)CrossRef
117.
Zurück zum Zitat F. Liu, Y. Zhang, J. Yu, S. Wang, S. Ge, X. Song, Application of ZNO/graphene and s6 aptamers for sensitive photo-electrochemical detection of sk-br-3 breast cancer cells based on a disposable indium tin oxide device. Bio-sens. Bio-electron. 51, 413–420 (2014) F. Liu, Y. Zhang, J. Yu, S. Wang, S. Ge, X. Song, Application of ZNO/graphene and s6 aptamers for sensitive photo-electrochemical detection of sk-br-3 breast cancer cells based on a disposable indium tin oxide device. Bio-sens. Bio-electron. 51, 413–420 (2014)
118.
Zurück zum Zitat M. Yan, G.Q. Sun, F. Liu, J.J. Lu, J.H. Yu, X.R. Song, An apt-sensor for sensitive detection of human breast cancer cells by using porous go/au composites and porous PTFE alloy as effective sensing platform and signal amplification labels. Anal. Chem. Acta 798, 33–39 (2013)CrossRef M. Yan, G.Q. Sun, F. Liu, J.J. Lu, J.H. Yu, X.R. Song, An apt-sensor for sensitive detection of human breast cancer cells by using porous go/au composites and porous PTFE alloy as effective sensing platform and signal amplification labels. Anal. Chem. Acta 798, 33–39 (2013)CrossRef
119.
Zurück zum Zitat G.F. Jie, Y.B. Zhao, S.Y. Niu, Amplified electro-chemiluminescence detection of cancer cells using a new bifunctional quantum dot as signal probe. Bio-sens. Bio-electron. 50, 368–372 (2013) G.F. Jie, Y.B. Zhao, S.Y. Niu, Amplified electro-chemiluminescence detection of cancer cells using a new bifunctional quantum dot as signal probe. Bio-sens. Bio-electron. 50, 368–372 (2013)
120.
Zurück zum Zitat D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, H. Altug, Mid-infrared plasmatic biological sensing with graphene. Science 349, 165–168 (2015)CrossRef D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. Javier Garcia de Abajo, V. Pruneri, H. Altug, Mid-infrared plasmatic biological sensing with graphene. Science 349, 165–168 (2015)CrossRef
121.
Zurück zum Zitat G. Niu, X. Chen, Why integrin as a primary target for imaging and therapy. Thera-Notices 1, 30–47 (2011) G. Niu, X. Chen, Why integrin as a primary target for imaging and therapy. Thera-Notices 1, 30–47 (2011)
122.
Zurück zum Zitat Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati, X.Y. Chen, A nanoscale graphene oxide-peptide biosensor for real-time specific biomarker detection on the cell surface. Chem. Commun. 48, 9768–9770 (2012)CrossRef Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati, X.Y. Chen, A nanoscale graphene oxide-peptide biosensor for real-time specific biomarker detection on the cell surface. Chem. Commun. 48, 9768–9770 (2012)CrossRef
123.
Zurück zum Zitat L. Cao, L. Cheng, Z. Zhang, Y. Wang, X. Zhang, H. Chen, B. Liu, S. Zhang, J. Kong, Visual and high-throughput detection of cancer cells using a graphene oxide-based fret apt sensing microfluidic chip. Lab Chip 12, 4864–4869 (2012)CrossRef L. Cao, L. Cheng, Z. Zhang, Y. Wang, X. Zhang, H. Chen, B. Liu, S. Zhang, J. Kong, Visual and high-throughput detection of cancer cells using a graphene oxide-based fret apt sensing microfluidic chip. Lab Chip 12, 4864–4869 (2012)CrossRef
124.
Zurück zum Zitat H.L. Zhuang, S.J. Zhen, J. Wang, C.Z. Huang, Sensitive detection of prion protein through long range resonance energy transfer between graphene oxide and molecular aptamer beacon. Anal. Methods 5, 208–212 (2013)CrossRef H.L. Zhuang, S.J. Zhen, J. Wang, C.Z. Huang, Sensitive detection of prion protein through long range resonance energy transfer between graphene oxide and molecular aptamer beacon. Anal. Methods 5, 208–212 (2013)CrossRef
Metadaten
Titel
The Application of Graphene in Biosensors
verfasst von
Ting Li
Zebin Li
Jinhao Zhou
Boan Pan
Xiao Xiao
Zhaojia Guo
Lanhui Wu
Yuanfu Chen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_10

Neuer Inhalt