Skip to main content
Erschienen in:

22.06.2022

The Beta Exponential Power Series Distribution

verfasst von: Nafiseh Khojastehbakht, Amirhossein Ghatari, Ehsan Bahrami Samani

Erschienen in: Annals of Data Science | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate to propose a new statistical distribution based on power series. We introduce a new family of distributions which are constructed based on a latent complementary risk problem and are obtained by compounding Beta Exponential (BE) and Power Series distributions. The new distribution contains, as special sub-models, several important distributions which are discussed in the literature, such as Beta Exponential Poisson (BEP) distribution, Beta Exponential Geometric (BEG) distribution, Beta Exponential Logarithmic (BEL) distribution, Beta Exponential Binomial (BEB) distribution as special cases. The hazard function of the BEPS distributions can be increasing, decreasing or bathtub shaped among others. The comprehensive mathematical properties of the new distribution is provided such as closed-form expressions for the density, cumulative distribution, survival function, failure rate function, the r-th raw moment, maximum likelihood estimation and also the moments of order statistics. The proposed type of distributions is used to modeling simulated and real datasets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gupta RD, Kundu D (1999) Theory & methods: generalized exponential distributions. Austr NZ J Stat 41(2):173–188CrossRef Gupta RD, Kundu D (1999) Theory & methods: generalized exponential distributions. Austr NZ J Stat 41(2):173–188CrossRef
2.
Zurück zum Zitat Mudholkar GS, Srivastava DK (1993) Exponentiated weibull family for analyzing bathtub failure-rate data. IEEE Trans Eeliab 42(2):299–302 Mudholkar GS, Srivastava DK (1993) Exponentiated weibull family for analyzing bathtub failure-rate data. IEEE Trans Eeliab 42(2):299–302
3.
Zurück zum Zitat Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37(4):436–445CrossRef Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37(4):436–445CrossRef
4.
Zurück zum Zitat Mudholkar GS, Hutson AD (1996) The exponentiated weibull family: some properties and a flood data application. Commun Stat-Theory Methods 25(12):3059–3083CrossRef Mudholkar GS, Hutson AD (1996) The exponentiated weibull family: some properties and a flood data application. Commun Stat-Theory Methods 25(12):3059–3083CrossRef
5.
Zurück zum Zitat Nassar MM, Eissa FH (2003) On the exponentiated weibull distribution. Commun Stat-Theory Methods 32(7):1317–1336CrossRef Nassar MM, Eissa FH (2003) On the exponentiated weibull distribution. Commun Stat-Theory Methods 32(7):1317–1336CrossRef
6.
Zurück zum Zitat Nadarajah S, Kotz S (2006) The exponentiated type distributions. Acta Applicandae Math 92(2):97–111CrossRef Nadarajah S, Kotz S (2006) The exponentiated type distributions. Acta Applicandae Math 92(2):97–111CrossRef
7.
Zurück zum Zitat Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat-Theory Methods 31(4):497–512CrossRef Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat-Theory Methods 31(4):497–512CrossRef
8.
Zurück zum Zitat Gupta AK, Nadarajah S (2005) On the moments of the beta normal distribution. Commun Stat-Theory Methods 33(1):1–13CrossRef Gupta AK, Nadarajah S (2005) On the moments of the beta normal distribution. Commun Stat-Theory Methods 33(1):1–13CrossRef
9.
Zurück zum Zitat Nadarajah S, Kotz S (2004) The beta gumbel distribution. Math Probl Eng 2004(4):323–332CrossRef Nadarajah S, Kotz S (2004) The beta gumbel distribution. Math Probl Eng 2004(4):323–332CrossRef
10.
Zurück zum Zitat Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91(6):689–697CrossRef Nadarajah S, Kotz S (2006) The beta exponential distribution. Reliab Eng Syst Saf 91(6):689–697CrossRef
11.
Zurück zum Zitat Barreto-Souza W, Santos AH, Cordeiro GM (2010) The beta generalized exponential distribution. J Stat Comput Simul 80(2):159–172CrossRef Barreto-Souza W, Santos AH, Cordeiro GM (2010) The beta generalized exponential distribution. J Stat Comput Simul 80(2):159–172CrossRef
12.
Zurück zum Zitat Raffiq G, Dar IS, Haq MAU, Ramos E (2020) The marshall–olkin inverted nadarajah–haghighi distribution: estimation and applications. Annals of Data Science, pp 1–16 Raffiq G, Dar IS, Haq MAU, Ramos E (2020) The marshall–olkin inverted nadarajah–haghighi distribution: estimation and applications. Annals of Data Science, pp 1–16
13.
Zurück zum Zitat Osatohanmwen P, Efe-Eyefia E, Oyegue FO, Osemwenkhae JE, Ogbonmwan SM, Afere BA (2022) The exponentiated gumbel–weibull \(\{\)Logistic\(\}\) distribution with application to nigeria’s covid-19 infections data. Annals of Data Science, pp 1–35 Osatohanmwen P, Efe-Eyefia E, Oyegue FO, Osemwenkhae JE, Ogbonmwan SM, Afere BA (2022) The exponentiated gumbel–weibull \(\{\)Logistic\(\}\) distribution with application to nigeria’s covid-19 infections data. Annals of Data Science, pp 1–35
14.
Zurück zum Zitat Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin New York
15.
Zurück zum Zitat Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer
16.
Zurück zum Zitat Dey S, Altun E, Kumar D and Ghosh I (2021) The reflected-shifted-truncated lomax distribution: associated inference with applications. Annals of Data Science, pp 1–24 Dey S, Altun E, Kumar D and Ghosh I (2021) The reflected-shifted-truncated lomax distribution: associated inference with applications. Annals of Data Science, pp 1–24
17.
Zurück zum Zitat Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef
18.
Zurück zum Zitat Carrasco JM, Ortega EM, Cordeiro GM (2008) A generalized modified weibull distribution for lifetime modeling. Comput Stat Data Anal 53(2):450–462CrossRef Carrasco JM, Ortega EM, Cordeiro GM (2008) A generalized modified weibull distribution for lifetime modeling. Comput Stat Data Anal 53(2):450–462CrossRef
19.
Zurück zum Zitat Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, second edition, vol 1. Wiley, Hoboken Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, second edition, vol 1. Wiley, Hoboken
20.
Zurück zum Zitat Moors J (1988) A quantile alternative for kurtosis. J Royal Stat Soc: Series D (The Statistician) 37(1):25–32 Moors J (1988) A quantile alternative for kurtosis. J Royal Stat Soc: Series D (The Statistician) 37(1):25–32
21.
Zurück zum Zitat Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108CrossRef Aarset MV (1987) How to identify a bathtub hazard rate. IEEE Trans Reliab 36(1):106–108CrossRef
22.
Zurück zum Zitat Wang F (2000) A new model with bathtub-shaped failure rate using an additive burr xii distribution. Reliab Eng Syst Saf 70(3):305–312CrossRef Wang F (2000) A new model with bathtub-shaped failure rate using an additive burr xii distribution. Reliab Eng Syst Saf 70(3):305–312CrossRef
23.
Zurück zum Zitat Choulakian V, Stephens MA (2001) Goodness-of-fit tests for the generalized pareto distribution. Technometrics 43(4):478–484CrossRef Choulakian V, Stephens MA (2001) Goodness-of-fit tests for the generalized pareto distribution. Technometrics 43(4):478–484CrossRef
24.
Zurück zum Zitat Chahkandi M, Ganjali M (2009) On some lifetime distributions with decreasing failure rate. Comput Stat Data Anal 53(12):4433–4440CrossRef Chahkandi M, Ganjali M (2009) On some lifetime distributions with decreasing failure rate. Comput Stat Data Anal 53(12):4433–4440CrossRef
25.
Zurück zum Zitat Chen G, Balakrishnan N (1995) A general purpose approximate goodness-of-fit test. J Qual Technol 27(2):154–161CrossRef Chen G, Balakrishnan N (1995) A general purpose approximate goodness-of-fit test. J Qual Technol 27(2):154–161CrossRef
Metadaten
Titel
The Beta Exponential Power Series Distribution
verfasst von
Nafiseh Khojastehbakht
Amirhossein Ghatari
Ehsan Bahrami Samani
Publikationsdatum
22.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science / Ausgabe 5/2023
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00414-8