Skip to main content

05.11.2024 | Original Paper

The complex-type k-Padovan sequences and their applications

verfasst von: Ömür Deveci, Anthony G. Shannon, Özgür Erdağ, Güntaç Ceco

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we define the complex-type k-Padovan numbers and then give the relationships between the \(\left( 1,k-1\right)\)-bonacci numbers, the k -Padovan numbers and the complex-type k-Padovan numbers by matrix method. In addition, we study the complex-type k-Padovan sequence modulo m and then we show that for some m the periods of the complex type k-Padovan and k-Padovan sequences modulo m are related. Furthermore, we extend the complex-type k-Padovan sequences to groups. Finally, we obtain the periods of the complex-type 4, 5, 6-Padovan sequences in the semidihedral group \(SD_{2^{m}}\), \(\left( m\ge 4\right)\) with respect to the generating pairs \(\left( x,y\right)\) and \(\left( y,x\right)\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adam, M., Assimakis, N.: \(k\)-Step sum and \(m\)-step gap Fibonacci sequence. Int. Scho. Res. Not. 2014(1), 374902 (2014) Adam, M., Assimakis, N.: \(k\)-Step sum and \(m\)-step gap Fibonacci sequence. Int. Scho. Res. Not. 2014(1), 374902 (2014)
2.
Zurück zum Zitat Aydın, H., Dikici, R.: General Fibonacci sequences in finite groups. Fibonacci Quart. 36(3), 216–221 (1998)MathSciNetCrossRef Aydın, H., Dikici, R.: General Fibonacci sequences in finite groups. Fibonacci Quart. 36(3), 216–221 (1998)MathSciNetCrossRef
4.
Zurück zum Zitat Bravo, J.J., Herrera, J.L.: Generalized Padovan sequences. Commun. Korean Math. Soc. 37(4), 977–988 (2022)MathSciNet Bravo, J.J., Herrera, J.L.: Generalized Padovan sequences. Commun. Korean Math. Soc. 37(4), 977–988 (2022)MathSciNet
5.
Zurück zum Zitat Campbell, C.M., Campbell, P.P.: On the Fibonacci length of powers of dihedral groups. In: Applications of Fibonacci numbers, Howard F.T (ed), Kluwer Academic Publisher, Dordrecht, vol. 9, pp. 69-85(2004) Campbell, C.M., Campbell, P.P.: On the Fibonacci length of powers of dihedral groups. In: Applications of Fibonacci numbers, Howard F.T (ed), Kluwer Academic Publisher, Dordrecht, vol. 9, pp. 69-85(2004)
6.
Zurück zum Zitat Campbell, C.M., Doostie, H., Robertson, E.F.: Fibonacci length of generating pairs in groups. In: Bergum, G.E. (ed.) Applications of Fibonacci numbers. Springer, vol. 3, pp. 27–35. Kluwer Academic Publishers, Dordrecht, (1990) Campbell, C.M., Doostie, H., Robertson, E.F.: Fibonacci length of generating pairs in groups. In: Bergum, G.E. (ed.) Applications of Fibonacci numbers. Springer, vol. 3, pp. 27–35. Kluwer Academic Publishers, Dordrecht, (1990)
7.
Zurück zum Zitat Deveci, Ö., Karaduman, E.: On the Padovan \(p\)-numbers. Hacet. J. Math. Stat. 46(4), 579–592 (2017)MathSciNet Deveci, Ö., Karaduman, E.: On the Padovan \(p\)-numbers. Hacet. J. Math. Stat. 46(4), 579–592 (2017)MathSciNet
8.
Zurück zum Zitat Deveci, Ö., Hulku, S., Shannon, A.G.: On the co-complex-type \(k\)-Fibonacci numbers. Chaos Solitons Fractals. 153, 111522 (2021)MathSciNetCrossRef Deveci, Ö., Hulku, S., Shannon, A.G.: On the co-complex-type \(k\)-Fibonacci numbers. Chaos Solitons Fractals. 153, 111522 (2021)MathSciNetCrossRef
9.
Zurück zum Zitat Deveci, Ö., Shannon, A.G.: The complex-type \(k\)-Fibonacci sequences and their applications. Commun. Algebra. 49(3), 1352–1367 (2021)MathSciNetCrossRef Deveci, Ö., Shannon, A.G.: The complex-type \(k\)-Fibonacci sequences and their applications. Commun. Algebra. 49(3), 1352–1367 (2021)MathSciNetCrossRef
10.
11.
Zurück zum Zitat Deveci, Ö., Gulliver, A., Hulku S., Apaydin, S.: Application of \(\left( r,k\right)\)-bonacci sequences (Submitted) Deveci, Ö., Gulliver, A., Hulku S., Apaydin, S.: Application of \(\left( r,k\right)\)-bonacci sequences (Submitted)
12.
Zurück zum Zitat Dişkaya, O., Menken, H.: On the pulsating Padovan sequence. Notes Number Theor Discret. Math. 30(1), 1–7 (2024)CrossRef Dişkaya, O., Menken, H.: On the pulsating Padovan sequence. Notes Number Theor Discret. Math. 30(1), 1–7 (2024)CrossRef
13.
Zurück zum Zitat Doostie, H., Hashemi, M.: Fibonacci lengths involving the Wall number \(K(n)\). J. Appl. Math. Comput. 20(1–2), 171–180 (2006)MathSciNetCrossRef Doostie, H., Hashemi, M.: Fibonacci lengths involving the Wall number \(K(n)\). J. Appl. Math. Comput. 20(1–2), 171–180 (2006)MathSciNetCrossRef
14.
Zurück zum Zitat Dummit, D.S., Foote, R.: Abstract algebra, 3rd edn., pp. 71–72. Wiley, New Jersey (2004) Dummit, D.S., Foote, R.: Abstract algebra, 3rd edn., pp. 71–72. Wiley, New Jersey (2004)
15.
Zurück zum Zitat Erdağ, Ö., Halıcı, S., Deveci, Ö.: The complex-type Padovan-p sequences. Math. Moravica. 26(1), 77–88 (2022)MathSciNetCrossRef Erdağ, Ö., Halıcı, S., Deveci, Ö.: The complex-type Padovan-p sequences. Math. Moravica. 26(1), 77–88 (2022)MathSciNetCrossRef
16.
Zurück zum Zitat Falcon, S., Plaza, A.: \(k\)-Fibonacci sequences modulo \(m\). Chaos Solitons Fractals. 41(1), 497–504 (2009)CrossRef Falcon, S., Plaza, A.: \(k\)-Fibonacci sequences modulo \(m\). Chaos Solitons Fractals. 41(1), 497–504 (2009)CrossRef
17.
Zurück zum Zitat Gorenstein, D.: Finite groups. AMS Chelsea Publishing, pp. 188–195 (1980) Gorenstein, D.: Finite groups. AMS Chelsea Publishing, pp. 188–195 (1980)
18.
Zurück zum Zitat Hashemi, M., Pirzadeh, M.: \(t\)-nacci Sequences in some special groups of order \(m3\). Mah. Rep. 20(4), 389–399 (2018) Hashemi, M., Pirzadeh, M.: \(t\)-nacci Sequences in some special groups of order \(m3\). Mah. Rep. 20(4), 389–399 (2018)
19.
Zurück zum Zitat Horadam, A.F.: Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Monthly. 70(3), 289–291 (1963)MathSciNetCrossRef Horadam, A.F.: Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Monthly. 70(3), 289–291 (1963)MathSciNetCrossRef
20.
Zurück zum Zitat Huppert, B.: Endliche Gruppen, pp. 90–93. Springer, New York (1967)CrossRef Huppert, B.: Endliche Gruppen, pp. 90–93. Springer, New York (1967)CrossRef
21.
22.
Zurück zum Zitat Karaduman, E., Aydın, H.: \(k\)-nacci sequences in some special groups of finite order. Math. Comput. Modell. 50(1–2), 53–58 (2009)MathSciNetCrossRef Karaduman, E., Aydın, H.: \(k\)-nacci sequences in some special groups of finite order. Math. Comput. Modell. 50(1–2), 53–58 (2009)MathSciNetCrossRef
23.
Zurück zum Zitat Kılıç, E., Taşçı, D.: On the generalized order- \(k\) Fibonacci and Lucas numbers. Rocky Mt. J. Math. 36(6), 1915–1926 (2006)MathSciNetCrossRef Kılıç, E., Taşçı, D.: On the generalized order- \(k\) Fibonacci and Lucas numbers. Rocky Mt. J. Math. 36(6), 1915–1926 (2006)MathSciNetCrossRef
25.
Zurück zum Zitat Köme, C.: Factorizations and eigenvalues of the \((r, k)\) -bonacci matrices. Comput. Appl. Math. 42(4), 185 (2023)MathSciNetCrossRef Köme, C.: Factorizations and eigenvalues of the \((r, k)\) -bonacci matrices. Comput. Appl. Math. 42(4), 185 (2023)MathSciNetCrossRef
26.
Zurück zum Zitat Lancaster, P., Tismenetsky, M.: The theory of matrices: with applications. Elsevier, Amsterdam (1985) Lancaster, P., Tismenetsky, M.: The theory of matrices: with applications. Elsevier, Amsterdam (1985)
27.
Zurück zum Zitat Lee, G., Kim, J.: On the Padovan codes and the Padovan cubes. Symmetry 15(2), 266 (2023)CrossRef Lee, G., Kim, J.: On the Padovan codes and the Padovan cubes. Symmetry 15(2), 266 (2023)CrossRef
28.
Zurück zum Zitat Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge U.P, Cambridge (1994)CrossRef Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge U.P, Cambridge (1994)CrossRef
29.
30.
Zurück zum Zitat Lu, K., Wang, J.: \(k\)-step Fibonacci sequence modulo \(m\). Util. Math. 71, 169–177 (2006)MathSciNet Lu, K., Wang, J.: \(k\)-step Fibonacci sequence modulo \(m\). Util. Math. 71, 169–177 (2006)MathSciNet
31.
Zurück zum Zitat Mehraban, E., Gulliver, T.A., Boulaaras, S.M., Hosseini, K., Hincal, E.: New sequences from the generalized Pell \(p\)-numbers and mersenne numbers and their application in cryptography. AIMS Math. 9(5), 13537–13552 (2024)MathSciNetCrossRef Mehraban, E., Gulliver, T.A., Boulaaras, S.M., Hosseini, K., Hincal, E.: New sequences from the generalized Pell \(p\)-numbers and mersenne numbers and their application in cryptography. AIMS Math. 9(5), 13537–13552 (2024)MathSciNetCrossRef
32.
33.
Zurück zum Zitat Özkan, E., Aydın, H., Dikici, R.: \(3\)-step Fibonacci series modulo \(m\). Appl. Math. Comput. 143(1), 165–172 (2003)MathSciNet Özkan, E., Aydın, H., Dikici, R.: \(3\)-step Fibonacci series modulo \(m\). Appl. Math. Comput. 143(1), 165–172 (2003)MathSciNet
34.
Zurück zum Zitat Özkan, E.: Truncated Lucas sequences and its period. Appl. Math. Comput. 232, 285–291 (2014)MathSciNet Özkan, E.: Truncated Lucas sequences and its period. Appl. Math. Comput. 232, 285–291 (2014)MathSciNet
35.
Zurück zum Zitat Shannon, A.G.: Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quart. 12(3), 281–287 (1974)MathSciNetCrossRef Shannon, A.G.: Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quart. 12(3), 281–287 (1974)MathSciNetCrossRef
36.
Zurück zum Zitat Shannon, A.G.: Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quart. 12(4), 327–335 (1974)MathSciNetCrossRef Shannon, A.G.: Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quart. 12(4), 327–335 (1974)MathSciNetCrossRef
37.
Zurück zum Zitat Tas, S., Karaduman, E.: The Padovan sequences in finite groups. Chiang Mai J. Sci. 41(2), 456–462 (2014)MathSciNet Tas, S., Karaduman, E.: The Padovan sequences in finite groups. Chiang Mai J. Sci. 41(2), 456–462 (2014)MathSciNet
38.
Zurück zum Zitat Tasci, D., Firengiz, M.C.: Incomplete Fibonacci and Lucas \(p\) -numbers. Math. Comput. Modell. 52(9–10), 1763–1770 (2010)MathSciNetCrossRef Tasci, D., Firengiz, M.C.: Incomplete Fibonacci and Lucas \(p\) -numbers. Math. Comput. Modell. 52(9–10), 1763–1770 (2010)MathSciNetCrossRef
40.
Metadaten
Titel
The complex-type k-Padovan sequences and their applications
verfasst von
Ömür Deveci
Anthony G. Shannon
Özgür Erdağ
Güntaç Ceco
Publikationsdatum
05.11.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00672-4