2014 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Classical and Spatial Stochastic Processes
The contact process has the same birth and death rates as the branching random walk of the preceding chapter. The difference between the two models is that there is at most one particle per site for the contact process. The one particle per site condition makes offsprings of different particles dependent (unlike what happens for branching models). Exact computations become impossible. However, branching models are used to analyze the contact process.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab.
18, 1462–1482 (1990)
MathSciNetCrossRefMATH
Harris, T.E.: Contact interactions on a lattice. Ann. Probab.
6, 198–206 (1974)
Liggett, T.M.: Multiple transition points for the contact process on the binary tree. Ann. Probab.
26, 1675–1710 (1996)
MathSciNet
Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Heidelberg (1999)
MATH
Madras, N., Schinazi, R.: Branching random walks on trees. Stoch. Process. Appl.
42, 255–267 (1992)
MathSciNetCrossRefMATH
Morrow, G., Schinazi, R., Zhang, Y.: The critical contact process on a homogeneous tree. J. Appl. Probab.
31, 250–255 (1994)
MathSciNetCrossRefMATH
Pemantle, R.: The contact process on trees. Ann. Probab.
20, 2089–2116 (1992)
MathSciNetCrossRefMATH
Stacey, A.: The existence of an intermediate phase for the contact process on trees. Ann. Probab.
24, 1711–1726 (1996)
MathSciNetCrossRefMATH
- Titel
- The Contact Process on a Homogeneous Tree
- DOI
- https://doi.org/10.1007/978-1-4939-1869-0_13
- Autor:
-
Rinaldo B. Schinazi
- Verlag
- Springer New York
- Sequenznummer
- 13
- Kapitelnummer
- Chapter 13