Skip to main content

2015 | OriginalPaper | Buchkapitel

The Design of a MRE-Based Nonlinear Broadband Energy Harvester

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, a conceptual design with its architecture of a broadband, vibration-based, nonlinear energy harvester is reported. Its non-linear behavior and its functionality are presented. Compared to that provided by conventional linear beam type of energy harvesters, this nonlinear harvester can provide widen the resonance frequency ranges. Hence, it can collect more vibration energy generated at various dominant rotational frequencies of a rotary machine. A smart material, called Magneto Rheological Elastomer (MRE), was added to the usual beam structured energy harvester. Since MRE is one of the magnetic smart materials, of which their stiffness can be tuned by precisely controlling the applied magnetic field, the stiffness of the combined piezoelectric beam with MRE becomes adjustable. Because of the adjustable stiffness, the resonance frequency of the new beam type energy harvester can be adaptively changed to match with a particular dominant rotational frequency generated by the monitored machine so that maximum vibration energy can be harvested. Moreover, due to the nonlinearity of the new composite beam structure, the range of resonance frequency range can be widened to make it easier to adapt a slightly varying dominant rotational frequency due to the monitored machine has small speed variation. Besides the presentation of design and its with its architecture in the article, the simulated and experimental results of the new non-linear harvester are also reported here. From the comparison study of the bandwidth and the output power generated by the new nonlinear energy harvester against that generated from conventional harvester, the result shows that new non-linear harvester is functioning superior to that of the conventional harvesters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ginde JM, Nichols ME, Eliea LD, Tardiff IL (1999) . SPIE conference on smart materials technologies. Magnetorheological elastomers properties and applications.pdf Ginde JM, Nichols ME, Eliea LD, Tardiff IL (1999) . SPIE conference on smart materials technologies. Magnetorheological elastomers properties and applications.pdf
2.
Zurück zum Zitat Kallio M. (2005) The elastic and damping properties of magnetorheological elastomers. VTT Publications, Espoo Kallio M. (2005) The elastic and damping properties of magnetorheological elastomers. VTT Publications, Espoo
3.
Zurück zum Zitat Chen C, Liao W-H (2012) A self-sensing magnetorheological damper with power generation. Smart Mater Struct 21(2):025014CrossRef Chen C, Liao W-H (2012) A self-sensing magnetorheological damper with power generation. Smart Mater Struct 21(2):025014CrossRef
4.
Zurück zum Zitat Zhou GY, Wang Q (2006) Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams. Smart Mater Struct 15(1):59–74CrossRef Zhou GY, Wang Q (2006) Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams. Smart Mater Struct 15(1):59–74CrossRef
5.
Zurück zum Zitat Erturk A et al (2008) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20(5):529–544CrossRef Erturk A et al (2008) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20(5):529–544CrossRef
6.
Zurück zum Zitat Zhou W et al (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21(1):015014CrossRef Zhou W et al (2012) An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater Struct 21(1):015014CrossRef
7.
Zurück zum Zitat Huang S-C, Lin K-A (2012) A novel design of a map-tuning piezoelectric vibration energy harvester. Smart Mater Struct 21(8):085014CrossRefMathSciNet Huang S-C, Lin K-A (2012) A novel design of a map-tuning piezoelectric vibration energy harvester. Smart Mater Struct 21(8):085014CrossRefMathSciNet
8.
Zurück zum Zitat Soliman MSM et al (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18(11):115021CrossRef Soliman MSM et al (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18(11):115021CrossRef
9.
Zurück zum Zitat Stanton SC et al (2010) Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J Appl Phys 108(7):074903CrossRef Stanton SC et al (2010) Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J Appl Phys 108(7):074903CrossRef
10.
Zurück zum Zitat Stanton SC et al (2010) Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators. Appl Phys Lett 97(25):254101CrossRef Stanton SC et al (2010) Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators. Appl Phys Lett 97(25):254101CrossRef
11.
Zurück zum Zitat Sebald G et al (2011) Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20(7):075022CrossRef Sebald G et al (2011) Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20(7):075022CrossRef
12.
Zurück zum Zitat Cottone F et al (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21(3):035021CrossRef Cottone F et al (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21(3):035021CrossRef
13.
Zurück zum Zitat Abdelkefi A et al (2011) Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn 67(2):1147–1160CrossRefMathSciNet Abdelkefi A et al (2011) Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn 67(2):1147–1160CrossRefMathSciNet
14.
Zurück zum Zitat Zhou GY, Wang Q (2005) Magnetorheological elastomer-based smart sandwich beams with nonconductive skins. Smart Mater Struct 14(5):1001–1009CrossRef Zhou GY, Wang Q (2005) Magnetorheological elastomer-based smart sandwich beams with nonconductive skins. Smart Mater Struct 14(5):1001–1009CrossRef
15.
Zurück zum Zitat Hu Y et al (2007) A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Mater Struct 16(5):1961–1966CrossRef Hu Y et al (2007) A piezoelectric power harvester with adjustable frequency through axial preloads. Smart Mater Struct 16(5):1961–1966CrossRef
16.
Zurück zum Zitat Ying ZG, Ni YQ (2009) Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater Struct 18(9):095005CrossRef Ying ZG, Ni YQ (2009) Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater Struct 18(9):095005CrossRef
Metadaten
Titel
The Design of a MRE-Based Nonlinear Broadband Energy Harvester
verfasst von
Peter W. Tse
M. L. Wang
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-09507-3_66