Skip to main content
Erschienen in: Journal of Engineering Mathematics 1/2016

03.11.2015

The dual probe heat pulse method: interaction between probes of finite radius and finite heat capacity

verfasst von: J. H. Knight, G. J. Kluitenberg, T. Kamai

Erschienen in: Journal of Engineering Mathematics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the dual-probe heat-pulse (DPHP) method for measuring the thermal properties of soil or other media. The method involves measuring the temperature rise of a receiver probe that is parallel to, and a known distance from, an emitter probe from which a pulse of heat is released. Under the assumption that the probes are perfect conductors, we derive a semi-analytical solution for this method that accounts for the finite radius and finite conductivity of the probes and contact resistance between probe and soil. The solution in the Laplace domain is obtained by writing solutions of the Helmholtz equation around each probe as infinite series of terms involving Bessel and trigonometric functions. Addition theorems are then used to write the solutions centred at each probe in terms of solutions centred at the other probe. Truncating the series and solving a system of linear equations gives numerical values for the series coefficients, which in turn gives values of the Laplace transforms for numerical inversion. We use the solution to investigate the validity of a simpler approximate solution that is being used in conjunction with the DPHP method for thermal property determination. For what we define as typical implementations of the method, our results show that error resulting from use of the approximate solution is sufficiently small that its effect on estimated thermal properties will be negligible. The same general approach can be used to investigate a growing number of DPHP applications for which the approximate solution may be of questionable accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lubimova HA, Lusova LM, Firsov FV, Starikova GN, Shushpanov AP (1961) Determination of surface heat flow in Mazesta (USSR). Ann Geophys 14:157–167 Lubimova HA, Lusova LM, Firsov FV, Starikova GN, Shushpanov AP (1961) Determination of surface heat flow in Mazesta (USSR). Ann Geophys 14:157–167
2.
Zurück zum Zitat Chudnovski AF (1962) Heat transfer in soil. (Russian Transl). Israel Program for Scientific Translations, Jerusaluem Chudnovski AF (1962) Heat transfer in soil. (Russian Transl). Israel Program for Scientific Translations, Jerusaluem
3.
Zurück zum Zitat Jaeger JC (1965) Application of the theory of heat conduction to geothermal measurements. In: Lee WHK (ed) Terrestrial heat flow. American Geophysical Union Monograph 8. American Geophysical Union, Washington, DC, pp 7–23 Jaeger JC (1965) Application of the theory of heat conduction to geothermal measurements. In: Lee WHK (ed) Terrestrial heat flow. American Geophysical Union Monograph 8. American Geophysical Union, Washington, DC, pp 7–23
4.
Zurück zum Zitat Campbell GS, Calissendorff C, Williams JH (1991) Probe for measuring soil specific heat using a heat-pulse method. Soil Sci Soc Am J 55(1):291–293CrossRef Campbell GS, Calissendorff C, Williams JH (1991) Probe for measuring soil specific heat using a heat-pulse method. Soil Sci Soc Am J 55(1):291–293CrossRef
5.
Zurück zum Zitat Bristow KL, Kluitenberg GJ, Horton R (1994) Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci Soc Am J 58:1288–1294CrossRef Bristow KL, Kluitenberg GJ, Horton R (1994) Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci Soc Am J 58:1288–1294CrossRef
6.
Zurück zum Zitat de Vries DA (1952) A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci 73:83–89CrossRef de Vries DA (1952) A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci 73:83–89CrossRef
7.
Zurück zum Zitat Knight JH, Kluitenberg GJ (2004) Simplified computational approach for dual-probe heat-pulse method. Soil Sci Soc Am J 68(2):447–449CrossRef Knight JH, Kluitenberg GJ (2004) Simplified computational approach for dual-probe heat-pulse method. Soil Sci Soc Am J 68(2):447–449CrossRef
8.
Zurück zum Zitat Knight JH, Kluitenberg GJ (2015) A simple rational approximation for heat capacity determination with the dual-probe heat-pulse method. Soil Sci Soc Am J 79(2):495–498CrossRef Knight JH, Kluitenberg GJ (2015) A simple rational approximation for heat capacity determination with the dual-probe heat-pulse method. Soil Sci Soc Am J 79(2):495–498CrossRef
9.
Zurück zum Zitat Bristow KL, Campbell GS, Calissendorff K (1993) Test of a heat-pulse probe for measuring changes in soil water content. Soil Sci Soc Am J 57(4):930–934CrossRef Bristow KL, Campbell GS, Calissendorff K (1993) Test of a heat-pulse probe for measuring changes in soil water content. Soil Sci Soc Am J 57(4):930–934CrossRef
10.
Zurück zum Zitat Kluitenberg GJ, Bristow KL, Das BS (1995) Error analysis of the heat pulse method for measuring soil heat capacity, diffusivity and conductivity. Soil Sci Soc Am J 59(3):719–726CrossRef Kluitenberg GJ, Bristow KL, Das BS (1995) Error analysis of the heat pulse method for measuring soil heat capacity, diffusivity and conductivity. Soil Sci Soc Am J 59(3):719–726CrossRef
11.
Zurück zum Zitat Tarara JM, Ham JM (1997) Measuring soil water content in the laboratory and field with dual-probe heat-capacity sensors. Agron J 89(4):535–542CrossRef Tarara JM, Ham JM (1997) Measuring soil water content in the laboratory and field with dual-probe heat-capacity sensors. Agron J 89(4):535–542CrossRef
12.
Zurück zum Zitat Ren T, Noborio K, Horton R (1999) Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci Soc Am J 63(3):450–457CrossRef Ren T, Noborio K, Horton R (1999) Measuring soil water content, electrical conductivity, and thermal properties with a thermo-time domain reflectometry probe. Soil Sci Soc Am J 63(3):450–457CrossRef
13.
Zurück zum Zitat Basinger JM, Kluitenberg GJ, Ham JM, Frank JM, Barnes PL, Kirkham MB (2003) Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content. Vadose Zone J 2(3):389–399CrossRef Basinger JM, Kluitenberg GJ, Ham JM, Frank JM, Barnes PL, Kirkham MB (2003) Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content. Vadose Zone J 2(3):389–399CrossRef
14.
Zurück zum Zitat Ochsner TE, Horton R, Ren T (2003) Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone. Vadose Zone J 2(4):572–579CrossRef Ochsner TE, Horton R, Ren T (2003) Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone. Vadose Zone J 2(4):572–579CrossRef
15.
Zurück zum Zitat Heitman JL, Xiao X, Horton R, Sauer TJ (2008) Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation. Water Resour Res 44:W00D05CrossRef Heitman JL, Xiao X, Horton R, Sauer TJ (2008) Sensible heat measurements indicating depth and magnitude of subsurface soil water evaporation. Water Resour Res 44:W00D05CrossRef
16.
Zurück zum Zitat Kluitenberg GJ, Kamai T, Vrugt JA, Hopmans JW (2010) Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements. Soil Sci Soc Am J 74(5):1537–1540CrossRef Kluitenberg GJ, Kamai T, Vrugt JA, Hopmans JW (2010) Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements. Soil Sci Soc Am J 74(5):1537–1540CrossRef
17.
Zurück zum Zitat Ham JM, Benson EJ (2004) On the construction and calibration of dual-probe heat capacity sensors. Soil Sci Soc Am J 68(4):1185–1190CrossRef Ham JM, Benson EJ (2004) On the construction and calibration of dual-probe heat capacity sensors. Soil Sci Soc Am J 68(4):1185–1190CrossRef
18.
Zurück zum Zitat Kamai T, Kluitenberg GJ, Hopmans JW (2015) A dual-probe heat-pulse sensor with rigid probes for improved soil water content measurement. Soil Sci Soc Am J 79(4):1059–1072CrossRef Kamai T, Kluitenberg GJ, Hopmans JW (2015) A dual-probe heat-pulse sensor with rigid probes for improved soil water content measurement. Soil Sci Soc Am J 79(4):1059–1072CrossRef
19.
Zurück zum Zitat Nusier OK, Abu-Hamdeh NH (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf 39:119–123ADS Nusier OK, Abu-Hamdeh NH (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf 39:119–123ADS
20.
Zurück zum Zitat Trautz AC, Smits KM, Schulte P, Illangasekare TH (2014) Sensible heat balance and heat-pulse method applicability to in situ soil-water evaporation. Vadose Zone J. doi:10.2136/vzj2012.0215 Trautz AC, Smits KM, Schulte P, Illangasekare TH (2014) Sensible heat balance and heat-pulse method applicability to in situ soil-water evaporation. Vadose Zone J. doi:10.​2136/​vzj2012.​0215
21.
Zurück zum Zitat Knight JH, Kluitenberg GJ, Kamai T, Hopmans JW (2012) Semianalytical solution for dual-probe heat-pulse applications that accounts for probe radius and heat capacity. Vadose Zone J. doi:10.2136/vzj2011.0112 Knight JH, Kluitenberg GJ, Kamai T, Hopmans JW (2012) Semianalytical solution for dual-probe heat-pulse applications that accounts for probe radius and heat capacity. Vadose Zone J. doi:10.​2136/​vzj2011.​0112
22.
Zurück zum Zitat Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transforms. Commun Assoc Comput Mach 13(1):47–49 Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transforms. Commun Assoc Comput Mach 13(1):47–49
23.
Zurück zum Zitat Stehfest H (1970) Remark on algorithm 368, numerical inversion of Laplace transforms. Commun Assoc Comput Mach 13(10):624 Stehfest H (1970) Remark on algorithm 368, numerical inversion of Laplace transforms. Commun Assoc Comput Mach 13(10):624
24.
Zurück zum Zitat Macher W, Kömle NI, Bentley MS, Kargl G (2014) Temperature evolution of two parallel composite cylinders with contact resistances and application to thermal dual-probes. Int J Heat Mass Transf 69:481–492CrossRef Macher W, Kömle NI, Bentley MS, Kargl G (2014) Temperature evolution of two parallel composite cylinders with contact resistances and application to thermal dual-probes. Int J Heat Mass Transf 69:481–492CrossRef
25.
Zurück zum Zitat Novakowski KS (1989) Analysis of pulse interference tests. Water Resour Res 25(11):2377–2387ADSCrossRef Novakowski KS (1989) Analysis of pulse interference tests. Water Resour Res 25(11):2377–2387ADSCrossRef
26.
Zurück zum Zitat Gordeliy E, Crouch SL, Mogilevskaya SG (2008) Transient heat conduction in a medium with two circular cavities: semi-analytical solution. Int J Heat Mass Transf 51:3556–3570CrossRefMATH Gordeliy E, Crouch SL, Mogilevskaya SG (2008) Transient heat conduction in a medium with two circular cavities: semi-analytical solution. Int J Heat Mass Transf 51:3556–3570CrossRefMATH
27.
Zurück zum Zitat Kamai T (2012) Development of heat pulse sensors to measure vadose zone thermal properties, water content, and water flux density, PhD Dissertation, University of California, Davis Kamai T (2012) Development of heat pulse sensors to measure vadose zone thermal properties, water content, and water flux density, PhD Dissertation, University of California, Davis
28.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordMATH Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordMATH
29.
Zurück zum Zitat Blackwell JH (1954) A transient-flow method for determination of thermal constants of insulating materials in bulk, part 1. theory. J Appl Phys 25:137–144ADSMathSciNetCrossRefMATH Blackwell JH (1954) A transient-flow method for determination of thermal constants of insulating materials in bulk, part 1. theory. J Appl Phys 25:137–144ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Moench AF, Evans DD (1970) Thermal conductivity and diffusivity of soil using a cylindrical heat source. Soil Sci Soc Am Proc 34:377–381CrossRef Moench AF, Evans DD (1970) Thermal conductivity and diffusivity of soil using a cylindrical heat source. Soil Sci Soc Am Proc 34:377–381CrossRef
31.
Zurück zum Zitat Knight JH, Kluitenberg GJ (2005) Some analytical solutions for sensitivity of well tests to variations in storativity and transmissivity. Adv Water Resour 28:1048–1056ADSCrossRef Knight JH, Kluitenberg GJ (2005) Some analytical solutions for sensitivity of well tests to variations in storativity and transmissivity. Adv Water Resour 28:1048–1056ADSCrossRef
32.
Zurück zum Zitat Knight JH, Jin W, Kluitenberg GJ (2007) Sensitivity of the dual-probe heat-pulse method to spatial variations in heat capacity. Vadose Zone J 6(4):746–758CrossRef Knight JH, Jin W, Kluitenberg GJ (2007) Sensitivity of the dual-probe heat-pulse method to spatial variations in heat capacity. Vadose Zone J 6(4):746–758CrossRef
33.
Zurück zum Zitat Watson GN (1966) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, CambridgeMATH Watson GN (1966) A treatise on the theory of Bessel functions, 2nd edn. Cambridge University Press, CambridgeMATH
34.
Zurück zum Zitat Olver FWJ (1965) Bessel functions of integer order. In: Abramowitz M, Stegun IA (eds) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York, pp 355–433 Olver FWJ (1965) Bessel functions of integer order. In: Abramowitz M, Stegun IA (eds) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York, pp 355–433
35.
Zurück zum Zitat Kincaid D, Cheney W (2002) Numerical analysis: mathematics of scientific computing, 3rd edn. American Mathematical Society, ProvidenceMATH Kincaid D, Cheney W (2002) Numerical analysis: mathematics of scientific computing, 3rd edn. American Mathematical Society, ProvidenceMATH
36.
Zurück zum Zitat Villinger H (1985) Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform. Geophysics 50(10):1581–1587ADSCrossRef Villinger H (1985) Solving cylindrical geothermal problems using the Gaver–Stehfest inverse Laplace transform. Geophysics 50(10):1581–1587ADSCrossRef
37.
Zurück zum Zitat Knight JH, Raiche AP (1982) Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method. Geophysics 47:47–50ADSCrossRef Knight JH, Raiche AP (1982) Transient electromagnetic calculations using the Gaver–Stehfest inverse Laplace transform method. Geophysics 47:47–50ADSCrossRef
38.
Zurück zum Zitat de Hoog FR, Knight JH, Stokes AN (1982) An improved method for numerical inversion of Laplace transforms. SIAM J Sci Stat Comput 3:357–366MathSciNetCrossRefMATH de Hoog FR, Knight JH, Stokes AN (1982) An improved method for numerical inversion of Laplace transforms. SIAM J Sci Stat Comput 3:357–366MathSciNetCrossRefMATH
39.
Zurück zum Zitat Bruggeman GA (1999) Analytical solutions of geohydrological problems. Elsevier, Amsterdam Bruggeman GA (1999) Analytical solutions of geohydrological problems. Elsevier, Amsterdam
40.
Zurück zum Zitat Benítez-Buelga J, Sayde C, Rodríguez-Sinobas L, Selker JS (2014) Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach. Vadose Zone J. doi:10.2136/vzj2014.02.0014 Benítez-Buelga J, Sayde C, Rodríguez-Sinobas L, Selker JS (2014) Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach. Vadose Zone J. doi:10.​2136/​vzj2014.​02.​0014
Metadaten
Titel
The dual probe heat pulse method: interaction between probes of finite radius and finite heat capacity
verfasst von
J. H. Knight
G. J. Kluitenberg
T. Kamai
Publikationsdatum
03.11.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Engineering Mathematics / Ausgabe 1/2016
Print ISSN: 0022-0833
Elektronische ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-015-9822-x

Weitere Artikel der Ausgabe 1/2016

Journal of Engineering Mathematics 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.