Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2016

09.06.2016

The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge

verfasst von: A. Kavitha, R. Kannan, P. Sreedhara Reddy, S. Rajashabala

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nano-crystalline Titanium Nitride (TiN) thin films were deposited on glass substrates by reactive DC magnetron sputtering in the presence of a supported discharge (dc triode magnetron sputtering). A hot thermionic filament which was negatively biased is kept between the target and substrate, and was used to sustain the discharge at much lower pressures. The TiN films deposited at room temperature (RT) were annealed at different temperatures of 373, 473 and 573 K in a high vacuum for 1 h. The films were characterized for their morphological, structural, micro-structural, optical and electrical properties. RT deposited titanium to nitrogen ratio was found to be 1:1 which has been confirmed by EDAX. XRD studies showed that the as-deposited TiN thin film were amorphous in nature and transformed to a nano-crystalline structure with increasing annealing temperatures. The crystallite growth of TiN thin films started around 373 K onwards, and it became a face-centered cubic structure with a preferred orientation along the (111) plane. The band gap of TiN thin films was found to increase from 2.7 to 3.2 eV with an increase in the annealing temperature. The photoluminescence spectrum of TiN thin films indicates a broadening of emission wavelength in the visible region with a maximum emission peak around 360 nm. The electrical resistivity of TiN thin films was found to drop significantly from 1800 to 400 µΩ cm with an increase in the annealing temperature. The AFM micrographs of annealed TiN thin films show uniform surface pattern associated with a large accumulation of fine grains. Through this work, it has been demonstrated that it is possible to achieve the required physical properties of TiN films at lower annealing temperatures by the supported discharge dc magnetron technique compared to other sputtering techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Subramanian, R. Ananthakumar, M. Jayachandran, Surf. Coat. Technol. 205, 3485 (2011)CrossRef B. Subramanian, R. Ananthakumar, M. Jayachandran, Surf. Coat. Technol. 205, 3485 (2011)CrossRef
2.
Zurück zum Zitat G. Martinez, V. Shutthanandan, S. Thevuthasan, J.F. Chessa, C.V. Ramana, Ceram. Int. 40, 5757 (2014)CrossRef G. Martinez, V. Shutthanandan, S. Thevuthasan, J.F. Chessa, C.V. Ramana, Ceram. Int. 40, 5757 (2014)CrossRef
3.
Zurück zum Zitat P. LeClair, G.P. Berera, J.S. Moodera, Thin Solid Films 376, 9 (2000)CrossRef P. LeClair, G.P. Berera, J.S. Moodera, Thin Solid Films 376, 9 (2000)CrossRef
4.
Zurück zum Zitat N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J. Mater. Sci. Mater. Electron. 27, 2800 (2016)CrossRef N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, J. Mater. Sci. Mater. Electron. 27, 2800 (2016)CrossRef
5.
Zurück zum Zitat A.S. Ingason, F. Magnus, J.S. Agustsson, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 517, 6731 (2009)CrossRef A.S. Ingason, F. Magnus, J.S. Agustsson, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 517, 6731 (2009)CrossRef
6.
Zurück zum Zitat N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J. Mater. Sci. Mater. Electron. 24, 1194 (2013)CrossRef N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J. Mater. Sci. Mater. Electron. 24, 1194 (2013)CrossRef
7.
Zurück zum Zitat M.Q. Snyder, S.A. Trebukhova, B. Ravdel, M.C. Wheeler, J. DiCarlo, C.P. Tripp, W.J. DeSisto, J. Power Sources 165, 379 (2007)CrossRef M.Q. Snyder, S.A. Trebukhova, B. Ravdel, M.C. Wheeler, J. DiCarlo, C.P. Tripp, W.J. DeSisto, J. Power Sources 165, 379 (2007)CrossRef
8.
Zurück zum Zitat S. Shayestehaminzadeh, T.K. Tryggvason, F. Magnus, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 549, 199 (2013)CrossRef S. Shayestehaminzadeh, T.K. Tryggvason, F. Magnus, S. Olafsson, J.T. Gudmundsson, Thin Solid Films 549, 199 (2013)CrossRef
10.
Zurück zum Zitat X. Lin, G. Zhao, L. Wu, G. Duan, G. Han, J. Alloys Compd. 502, 195 (2010)CrossRef X. Lin, G. Zhao, L. Wu, G. Duan, G. Han, J. Alloys Compd. 502, 195 (2010)CrossRef
11.
Zurück zum Zitat P. Henry, M.-J. Pac, C. Rousselot, M.-H. Tuilier, Surf. Coat. Technol. 223, 79 (2013)CrossRef P. Henry, M.-J. Pac, C. Rousselot, M.-H. Tuilier, Surf. Coat. Technol. 223, 79 (2013)CrossRef
13.
14.
Zurück zum Zitat D.M. Devia, E. Restrepo-Parra, P.J. Arango, A.P. Tschiptschin, J.M. Velez, Appl. Surf. Sci. 257, 6181 (2011)CrossRef D.M. Devia, E. Restrepo-Parra, P.J. Arango, A.P. Tschiptschin, J.M. Velez, Appl. Surf. Sci. 257, 6181 (2011)CrossRef
15.
16.
Zurück zum Zitat D.R. Irala, L.C. Fontana, J.C. Sagás, H.S. Maciel, Surf. Coat. Technol. 240, 154 (2014)CrossRef D.R. Irala, L.C. Fontana, J.C. Sagás, H.S. Maciel, Surf. Coat. Technol. 240, 154 (2014)CrossRef
17.
Zurück zum Zitat M. Popovi, M. Novakovi, N. Bibi, Process. Appl. Ceram. 9(2), 67 (2015)CrossRef M. Popovi, M. Novakovi, N. Bibi, Process. Appl. Ceram. 9(2), 67 (2015)CrossRef
18.
Zurück zum Zitat A. Jafari, Z. Ghoranneviss, A.S. Elahi, M. Ghoranneviss, N.F. Yazdi, A. Rezaei, Adv. Mech. Eng. Article ID 373847. Hindawi Publishing Corporation (2014) A. Jafari, Z. Ghoranneviss, A.S. Elahi, M. Ghoranneviss, N.F. Yazdi, A. Rezaei, Adv. Mech. Eng. Article ID 373847. Hindawi Publishing Corporation (2014)
19.
Zurück zum Zitat J.-H. Huang, T.K.-J. Yu, P. Sitb, G.-P. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 200, 4291 (2006)CrossRef J.-H. Huang, T.K.-J. Yu, P. Sitb, G.-P. Yu, Heat treatment of nanocrystalline TiN films deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 200, 4291 (2006)CrossRef
20.
Zurück zum Zitat U.C. Oh, J.H. Je, J. Appl. Phys. 74(3), 1 (1993) U.C. Oh, J.H. Je, J. Appl. Phys. 74(3), 1 (1993)
21.
Zurück zum Zitat B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Mater. Sci. Eng. B 176, 1 (2011)CrossRef B. Subramanian, R. Ananthakumar, V.S. Vidhya, M. Jayachandran, Mater. Sci. Eng. B 176, 1 (2011)CrossRef
22.
Zurück zum Zitat C.P. Constable, J. Yarwood, W.D. Munz, Surf. Coat. Technol. 116–119, 155 (1999)CrossRef C.P. Constable, J. Yarwood, W.D. Munz, Surf. Coat. Technol. 116–119, 155 (1999)CrossRef
23.
Zurück zum Zitat M.N. Solovan, V.V. Brus, P.D. Maryanchuk, I.M. Fodchuk, V.M. Lorents, A.M. Sletov, M.M. Sletov, M. Glub, Opt. Spectrosc. 117(5), 753 (2014)CrossRef M.N. Solovan, V.V. Brus, P.D. Maryanchuk, I.M. Fodchuk, V.M. Lorents, A.M. Sletov, M.M. Sletov, M. Glub, Opt. Spectrosc. 117(5), 753 (2014)CrossRef
24.
Zurück zum Zitat S.T. Sundari, R.Ramaseshan, F. Jose, S. Dash, A.K. Tyagi, arXiV: 1308.0470v1 [cond-mat.mtrl-sci] 2 Aug 2013 S.T. Sundari, R.Ramaseshan, F. Jose, S. Dash, A.K. Tyagi, arXiV: 1308.0470v1 [cond-mat.mtrl-sci] 2 Aug 2013
25.
Zurück zum Zitat M.S.R.N. Kiran, M.G. Krishna, K.A. Padmanabhan, Appl. Surf. Sci. 255, 1934 (2008)CrossRef M.S.R.N. Kiran, M.G. Krishna, K.A. Padmanabhan, Appl. Surf. Sci. 255, 1934 (2008)CrossRef
26.
Zurück zum Zitat T. Prakash, R. Jayaprakash, G. Neri, S. Kumar, J. Nanopart., Article ID 274894. Hindawi Publishing Corporation (2013) T. Prakash, R. Jayaprakash, G. Neri, S. Kumar, J. Nanopart., Article ID 274894. Hindawi Publishing Corporation (2013)
27.
Zurück zum Zitat O. Singh, R.P. Dahiya, H.K. Malik, P. Kumar, V. Singh, Appl. Sci. Lett. 2(1), 37 (2016)CrossRef O. Singh, R.P. Dahiya, H.K. Malik, P. Kumar, V. Singh, Appl. Sci. Lett. 2(1), 37 (2016)CrossRef
28.
Zurück zum Zitat S.-G. Lu, Y.-H. Lu, Z.-K. Xu, K.-W. Cheah, J. Am. Ceram. Soc. 90(12), 4002 (2007) S.-G. Lu, Y.-H. Lu, Z.-K. Xu, K.-W. Cheah, J. Am. Ceram. Soc. 90(12), 4002 (2007)
29.
Zurück zum Zitat N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, A. O’Neill, Thin Solid Films 578, 31 (2015)CrossRef N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, A. O’Neill, Thin Solid Films 578, 31 (2015)CrossRef
Metadaten
Titel
The effect of annealing on the structural, optical and electrical properties of Titanium Nitride (TiN) thin films prepared by DC magnetron sputtering with supported discharge
verfasst von
A. Kavitha
R. Kannan
P. Sreedhara Reddy
S. Rajashabala
Publikationsdatum
09.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5130-0

Weitere Artikel der Ausgabe 10/2016

Journal of Materials Science: Materials in Electronics 10/2016 Zur Ausgabe

Neuer Inhalt